当前位置: 首页 > news >正文

STM32和DHT11使用显示温湿度度(代码理解)+单总线协议

基于STM32CT,利用DHT11采集温湿度数据,在OLED上显示。一定要阅读DHT11数据手册。

1、 DHT11温湿度传感器

引脚说明

1、VDD 供电3.3~5.5V DC
2、DATA 串行数据,单总线
3、NC 空脚
4、GND 接地,电源负极

硬件电路

微处理器与DHT11的连接典型应用电路如上图所示,DATA上拉后与微处理器的I/O端口相连。
1.典型应用电路中建议连接线长度短于5m时用4.7K上拉电阻,大于5m时根据实际情况降低上拉电
阻的阻值。
2. 使用3.3V电压供电时连接线尽量短,接线过长会导致传感器供电不足,造成测量偏差。
3. 每次读出的温湿度数值是上一次测量的结果,欲获取实时数据,需连续读取2次,但不建议连续多次
读取传感器,每次读取传感器间隔大于2秒即可获得准确的数据。

以上硬件部分来自于DHT11数据手册,为方便硬件部分DATA直接接STM32的IO口。
硬件部分接好线之后,需要知道单片机和 DHT11如何通信,即将数据传给单片机显示在OLED上。

2、单总线协议

DHT11与单片机之间通过简化的单总线协议通信。(和从机通过1根线进行通信,在一条总线上可挂接的从器件数量几乎不受限制。既可传输时钟,又能传输数据,而且数据传输是双向的。)

  • 单总线即只有一根数据线,系统中的数据交换、控制均由单总线完成。
  • 设备(主机或从机)通过一个漏极开路或三态端口连至该数据线,以允许设备在不发送数据时能够释放总线,而让其它设备使用总线;
  • 单总线通常要求外接一个约 4.7kΩ 的上拉电阻,这样,当总线闲置时,其状态为高电平。由于它们是主从j结构,只有主机呼叫从机时,从机才能应答,因此主机访问器件都必须严格遵循单总线序列,如果出现序列混乱,器件将不响应主机。

重点理解下图的时序图就明白具体什么样,后续的代码也是基于这个图编写的协议。
在这里插入图片描述
上下两张图相同
在这里插入图片描述
通信过程分为主机(stm32)发送起始信号-从机(DHT11)发送响应信号-从机发送数据-从机发送结束信号

  • DHT11上电后,一直采集数据,DATA数据线由上拉电阻拉高(或者单片机IO口设置为高电平)一直保持高电平;此时 DHT11的 DATA 引脚处于输入状态,时刻检测外部信号。
  • 主机起始信号:单片机IO口为输出模式,输出低电平并保持一段时间,然后再回高电平也就是释放总线,另外IO口转为开漏输入模式。
  • 从机响应信号:DATA引脚检测到外部信号有低电平时,等待外部信号低电平结束后,输出 一段时间的低电平作为应答信号,紧接着输出一段时间的高电平(也就是释放总线)通知单片机准备接收数据。
  • 输出40位数据: 湿度高8位 :湿度低8位: 温度高8位 : 温度低8位 : 校验位
    校验位 =湿度高8位 + 湿度低8位 +温度高8位 + 温度低8位 ,不正确则放弃重新接收数据。
    输出数据时:,位数据0的格式为: 54 微秒的低电平和 23-27 微秒的高电平,位数据1的格式为: 54 微秒的低电平加68-74微秒的高电平。
  • 结束信号:数据输出完后,继续输出持续时间的低电平后转为输入状态,由于释放总线随之变为高电平。但DHT11内部重测环境温湿度数据,并记录数据,等待外部信号的到来。

该表来自DHT11数据手册,说明了起始信号、响应信号、发送数据0/1、结束信号中高低电平的持续时间,编写代码时也要参照这着表格和上面的时序图编写。
在这里插入图片描述

3、DHT11代码

DHT11.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"#define  DHT11_IO   GPIOB
#define  DHT11_Pin  GPIO_Pin_12
#define  DHT11_RCC  RCC_APB2Periph_GPIOB//设置IO输出
void DHT11_MOSI_Init(void)
{RCC_APB2PeriphClockCmd(DHT11_RCC,ENABLE);GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP; //推挽输出GPIO_InitStruct.GPIO_Pin=DHT11_Pin;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(DHT11_IO,&GPIO_InitStruct);GPIO_SetBits(DHT11_IO,DHT11_Pin);}//设置IO为输入
void DHT11_MISO_Init(void)
{RCC_APB2PeriphClockCmd(DHT11_RCC,ENABLE);GPIO_InitTypeDef GPIO_InitStruct;//浮空输入,引脚电平来自外界GPIO_InitStruct.GPIO_Mode=GPIO_Mode_IN_FLOATING; GPIO_InitStruct.GPIO_Pin=DHT11_Pin;GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(DHT11_IO,&GPIO_InitStruct);}//单总线通信 开始
void DHT11_Start(void)
{DHT11_MOSI_Init();  //highGPIO_ResetBits(DHT11_IO,DHT11_Pin);//low 主机拉低总线18-30ms,然后释放Delay_ms(25);GPIO_SetBits(DHT11_IO,DHT11_Pin);  //high  释放Delay_us(13);  //保持高电平,等待从机响应     根据数据手册设置的主机释放总线的时间DHT11_MISO_Init();  //io为输入 等待从机}// 接收数据,高位先行
uint8_t DHT11_ReceiveByte(void)
{uint8_t Byte=0x00;for(int i=0;i<8;i++){//数据0:54us低电平+23-27高电平  数据1:54us低电平+68-74高电平while(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==0);//等待低电平时间过去Delay_us(40);  //高电平持续时间超过40 说明数据为1if(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==1)  //读到为1,说明为高电平{ Byte|=(0x80>>i); //将数据位写入 Byte 中,从高位到低位  高位先行while(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==1);//等待高电平结束}}return Byte;}
//接收数据
//该函数每次读出的温湿度数值是上一次读取测量的结果 
char DHT11_GetData(uint8_t *Humi,uint8_t* Temp)
{char Mark='+'; //温度 零下还是零上uint8_t Humi_H,Humi_L,Temp_H,Temp_L,Check; //温湿度高低位、校验位DHT11_Start();//通信if(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==0){while(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==0);  //DHT11响应完毕while(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==1);  // 准备接收高电平之后的数据//湿度高8位    湿度低8位   温度高8位     温度低8位      校验位  传感器输出40位数据Humi_H=DHT11_ReceiveByte();                   Humi_L=DHT11_ReceiveByte();//等于0Temp_H=DHT11_ReceiveByte();Temp_L=DHT11_ReceiveByte();//温度低8位中的Bit8为1则表示负温度,否则为正温度,后7位为小数部分Check=DHT11_ReceiveByte();if(Humi_H+Humi_L+Temp_H+Temp_L==Check) //校验{*Humi=Humi_H; //传送数据*Temp=Temp_H;//小数部分不做处理//如果温度的低8位的最高位为1,表示温度为负数if((Temp_L&0x80)==0x80){Mark='-';}}//DHT11继续输出低电平54微秒后转为输入状态,释放总线变为高电平。while(GPIO_ReadInputDataBit(DHT11_IO,DHT11_Pin)==0);GPIO_SetBits(DHT11_IO,DHT11_Pin); //释放总线}return Mark;
}
//获取实时温湿度
//连续获取两次数据,DHT11模块会在上一次结束信号时重测温湿度数据
char DHT11_GetRealData(uint8_t *Humi,uint8_t* Temp)
{char Mark='+';DHT11_GetData(Humi,Temp);Delay_ms(1000);Delay_ms(1000);Delay_ms(100);          //数据手册规定读取传感器数据大于2sMark=DHT11_GetData(Humi,Temp);return Mark;}

DHT11.h

#ifndef __DTH11_H
#define __DTH11_H//上电后等待1秒才调用函数
char DHT11_GetData(uint8_t *Humi,uint8_t* Temp);
char DHT11_GetRealData(uint8_t *Humi,uint8_t* Temp);//实时温湿度
void DHT11_Start(void);
#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "DTH11.H"uint8_t Humi,Temp;
int main(void)
{OLED_Init();DHT11_Start();OLED_ShowString(1, 1, "Humi:");OLED_ShowString(2, 1, "Temp:");Delay_ms(1000);while (1){DHT11_GetData(&Humi,&Temp);DHT11_GetRealData(&Humi,&Temp);OLED_ShowNum(1,6,Humi,2);OLED_ShowNum(2,6,Temp,2);}
}

相关文章:

STM32和DHT11使用显示温湿度度(代码理解)+单总线协议

基于STM32CT&#xff0c;利用DHT11采集温湿度数据&#xff0c;在OLED上显示。一定要阅读DHT11数据手册。 1、 DHT11温湿度传感器 引脚说明 1、VDD 供电3.3&#xff5e;5.5V DC 2、DATA 串行数据&#xff0c;单总线 3、NC 空脚 4、GND 接地&#xff0c;电源负极 硬件电路 微…...

EVM-MLIR:以MLIR编写的EVM

1. 引言 EVM_MLIR&#xff1a; 以MLIR编写的EVM。 开源代码实现见&#xff1a; https://github.com/lambdaclass/evm_mlir&#xff08;Rust&#xff09; 为使用MLIR和LLVM&#xff0c;将EVM-bytecode&#xff0c;转换为&#xff0c;machine-bytecode。LambdaClass团队在2周…...

深入Django(八)

掌握Django的管理后台 引言 在前七天的教程中&#xff0c;我们介绍了Django的基础架构、模型、视图、模板、URL路由、表单系统以及数据库迁移。今天&#xff0c;我们将深入了解Django的管理后台&#xff0c;这是一个功能强大的内置管理界面&#xff0c;用于创建、更新、查看和…...

华为开发者大会2024纪要:鸿蒙OS的全新篇章与AI大模型的革命

华为开发者大会2024纪要:鸿蒙OS的全新篇章与AI大模型的革命 在科技的浪潮中,华为再次引领潮流,2024年的开发者大会带来了一系列令人瞩目的创新成果。从鸿蒙操作系统的全新Beta版到盘古大模型的震撼发布,华为正以前所未有的速度重塑智能生态。以下是本次大会的亮点,让我们…...

吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.7-2.8

目录 第三门课 结构化机器学习项目&#xff08;Structuring Machine Learning Projects&#xff09;第二周&#xff1a;机器学习策略&#xff08;2&#xff09;(ML Strategy (2))2.7 迁移学习&#xff08;Transfer learning&#xff09; 第三门课 结构化机器学习项目&#xff0…...

云计算渲染时代:选择Blender或KeyShot进行高效渲染

在云渲染技术日益成熟的背景下&#xff0c;挑选一款贴合项目需求的3D渲染软件显得尤为关键。当前&#xff0c;Blender与KeyShot作为业界领先的全能渲染解决方案&#xff0c;广受推崇。它们虽皆能创造出令人信服的逼真视觉效果&#xff0c;但在特色功能上各有所长。本篇文章旨在…...

html5中的iframe

HTML5中的iframe 浏览上下文是浏览器展示文档的环境&#xff0c;通常是一个tab标签页&#xff0c;一个窗体或者是浏览器页面的一部分。每个浏览上下文都有一个活动文档的源和一个记录所有展示文档的有序历史。浏览上下文的通讯被严格限制&#xff0c;只有两个同源的浏览器上下…...

海睿思问数(TableGPT):开创企业新一代指标应用模式

1 指标建设对企业经营管理数字化的价值分析 指标是将海量数据中关键信息提炼和挖掘出来&#xff0c;以数据为载体展示企业经营管理和分析中的统计量。它通过分析数据&#xff0c;形成一个具有度量值的汇总结果&#xff0c;使得业务状态可以被描述、量化和分解。指标通常由度量…...

LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能

LM-Cocktail:一种创新的模型合并方法打破预训练语言模型微调后的性能局限,实现语言模型在一般任务与特定领域的均衡高性能 使语言模型的微调类似于调制一杯精致的鸡尾酒。模型合并可用于提高单个模型的性能。我们发现此方法对于大型语言模型和密集嵌入模型也很有用,并设计了…...

默认导出(default)和命名导出

1.默认导出 优点&#xff1a; 简洁的导入语法&#xff1a; 导入时不需要使用花括号&#xff0c;可以直接重命名。单一职责&#xff1a; 模块导出一个主要功能或对象时&#xff0c;默认导出更符合逻辑。 适用场景&#xff1a; 模块只有一个导出&#xff1a; 如一个组件、一个…...

开发个人Go-ChatGPT--1 项目介绍

开发个人Go-ChatGPT--1 项目介绍 开发个人Go-ChatGPT--1 项目介绍知识点大纲文章目录项目地址 开发个人Go-ChatGPT–1 项目介绍 本文将以一个使用Ollama部署的ChatGPT为背景&#xff0c;主要还是介绍和学习使用 go-zero 框架&#xff0c;开发个人Go-ChatGPT的服务器后端&#…...

皮卡超级壁纸 | 幸运壁纸幸运壁纸app是一款涵盖了热门影视剧、动漫、风景等等资源的装饰工具,

软件下载链接&#xff1a;壁纸下载方式在链接中文章底部 皮卡超级壁纸 皮卡超级壁纸是一款专为手机用户设计的壁纸应用&#xff0c;它提供了丰富多样的高清壁纸资源&#xff0c;让用户的手机界面焕然一新。这款应用以其海量的壁纸库和用户友好的操作界面&#xff0c;在市场上…...

普通集群与镜像集群配置

目录 一. 环境准备 二. 开始配置集群 三. RabbitMQ镜像集群配置 四. 安装并配置负载均衡器HA 一. 环境准备 关闭防火墙和selinux&#xff0c;进行时间同步 主机名系统IP服务rabbitmq-1 Rocky_linux9.4 192.168.226.22RabbitMQ&#xff0c;MySQLrabbitmq-2Rocky_linux9.41…...

2024科技文化节程序设计竞赛

补题链接 https://www.luogu.com.cn/contest/178895#problems A. 签到题 忽略掉大小为1的环&#xff0c;答案是剩下环的大小和减环的数量 #include<bits/stdc.h> #include<iostream> #include<cstdio> #include<vector> #include<map> #incl…...

玩转Easysearch语法

Elasticsearch 是一个基于Apache Lucene的开源分布式搜索和分析引擎&#xff0c;广泛应用于全文搜索、结构化搜索、分析等多种场景。 Easysearch 作为Elasticsearch 的国产化替代方案&#xff0c;不仅保持了与原生Elasticsearch 的高度兼容性&#xff0c;还在功能、性能、稳定性…...

【密码学】RSA公钥加密算法

文章目录 RSA定义RSA加密与解密加密解密 生成密钥对一个例子密钥对生成加密解密 对RSA的攻击通过密文来求得明文通过暴力破解来找出D通过E和N求出D对N进行质因数分解通过推测p和q进行攻击 中间人攻击 一些思考公钥密码比对称密码的机密性更高&#xff1f;对称密码会消失&#x…...

【ARMv8/v9 GIC 系列 5.1 -- GIC GICD_CTRL Enable 1 of N Wakeup Function】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC Enable 1 of N Wakeup Function基本原理工作机制配置方式应用场景小结GIC Enable 1 of N Wakeup Function 在ARM GICv3(Generic Interrupt Controller第三代)规范中,引入了一个名为"Enable 1 of N Wakeup"的功能。…...

C++怎么解决不支持字符串枚举?

首先&#xff0c;有两种方法&#xff1a;使用命名空间和字符串常量与使用 enum class 和辅助函数。 表格直观展示 特性使用命名空间和字符串常量使用 enum class 和辅助函数类型安全性低 - 编译器无法检查字符串有效性&#xff0c;运行时发现错误高 - 编译期类型检查&#xf…...

中英双语介绍四大会计师事务所(Big Four accounting firms)

中文版 “四大会计师事务所”&#xff08;Big Four accounting firms&#xff09;是全球最具影响力和规模最大的四家专业服务公司&#xff0c;它们在审计、税务、咨询和财务咨询等领域占据着主导地位。这四家公司分别是普华永道&#xff08;PwC&#xff09;、德勤&#xff08;…...

ubuntu 查看联网配置

在Ubuntu中&#xff0c;你可以使用多种命令来查看联网配置。以下是一些常用的方法和命令&#xff1a; 查看网络接口配置&#xff1a; 使用 ip 命令可以查看网络接口的配置信息&#xff0c;包括IP地址、子网掩码等。 ip addr show或者&#xff0c;你也可以使用传统的 ifconfig 命…...

【数据分享】全国乡村旅游重点镇(乡)数据(Excel/Shp格式/免费获取)

之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据&#xff08;可查看之前发布的文章&#xff09;&#xff01;文化和旅游部官网上也分享有很多与旅游相关的常用数据&#xff0c;我们基于官网发布的名单文件整理得到全国乡村…...

停车场小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;车主管理&#xff0c;商家管理&#xff0c;停车场信息管理&#xff0c;预约停车管理&#xff0c;商场收费管理&#xff0c;留言板管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;停车场信息…...

绿色金融相关数据合集(2007-2024年 具体看数据类型)

数据类型&#xff1a; 1.绿色债券数据&#xff1a;2014-2023 2.绿色信贷相关数据&#xff1a;2007-2022 3.全国各省及地级市绿色金融指数&#xff1a;1990-2022 4.碳排放权交易明细数据&#xff1a;2013-2024 5.绿色金融试点DID数据&#xff1a;2010-2023 数据来源&#…...

【matlab 项目工期优化】基于NSGA2/3的项目工期多目标优化(时间-成本-质量-安全)

一 背景介绍 本文分享了一个通用的项目工期优化的案例&#xff0c;决策变量是每个子项目的工期&#xff0c;优化目标是项目的完成时间最小&#xff0c;项目的总成本现值最小&#xff0c;项目的总安全水平最高&#xff0c;项目的总质量水平最高。采用的算法是NSGA2和NSGA3算法。…...

Python考前复习

选择题易错&#xff1a; python3不能完全兼容python2内置函数是python的内置对象之一&#xff0c;无需导入其他模块python中汉字变量合法&#xff0c;如“小李123”合法&#xff1b;但T-C不合法&#xff0c;因为有“-”集合无顺序&#xff0c;不能索引&#xff1b;range(5)[2]…...

虚拟机交叉编译基于ARM平台的opencv(ffmpeg/x264)

背景&#xff1a; 由于手上有一块rk3568的开发板&#xff0c;需要运行yolov5跑深度学习模型&#xff0c;但是原有的opencv不能对x264格式的视频进行解码&#xff0c;这里就需要将ffmpegx264编译进opencv。 但是开发板算力有限&#xff0c;所以这里采用在windows下&#xff0c;安…...

react之错误边界

错误边界实质是指什么 实际上是组件 错误边界捕获什么时候的错误 在渲染阶段的错误 错误边界捕获的是谁的错误 捕获的是子组件的错误 错误边界不能捕获什么错误 1、不能捕获异步代码 2、不能捕获事件处理函数 3、不能捕获服务端渲染 4、不能捕获自身抛出的错误 错误…...

openEuler系统之使用Keepalived+Nginx部署高可用Web集群

Linux系统之使用Keepalived+Nginx部署高可用Web集群 一、本次实践介绍1.1 本次实践简介1.2 本次实践环境规划二、keepalived介绍2.1 keepalived简介2.2 keepalived主要特点和功能2.3 使用场景三、Keepalived和Nginx介绍3.1 Nginx简介3.2 Nginx特点四、master节点安装nginx4.1 安…...

基于图像处理的滑块验证码匹配技术

滑块验证码是一种常见的验证码形式&#xff0c;通过拖动滑块与背景图像中的缺口进行匹配&#xff0c;验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术&#xff0c;并提供优化代码以提高滑块位置偏移量的准确度&#xff0c;尤其是在背景图滑块阴影较浅的情…...

【JavaEE精炼宝库】文件操作(1)——基本知识 | 操作文件——打开实用性编程的大门

目录 一、文件的基本知识1.1 文件的基本概念&#xff1a;1.2 树型结构组织和目录&#xff1a;1.3 文件路径&#xff08;Path&#xff09;&#xff1a;1.4 二进制文件 VS 文本文件&#xff1a;1.5 其它&#xff1a; 二、Java 操作文件2.1 方法说明&#xff1a;2.2 使用演示&…...

常用排序算法_06_归并排序

1、基本思想 归并排序采用分治法 (Divide and Conquer) 的一个非常典型的应。归并排序的思想就是先递归分解数组&#xff0c;再合并数组。归并排序是一种稳定的排序方法。 将数组分解最小之后&#xff08;数组中只有一个元素&#xff0c;数组有序&#xff09;&#xff1b;然后…...

14-8 小型语言模型的兴起

过去几年&#xff0c;我们看到人工智能能力呈爆炸式增长&#xff0c;其中很大一部分是由大型语言模型 (LLM) 的进步推动的。GPT-3 等模型包含 1750 亿个参数&#xff0c;已经展示了生成类似人类的文本、回答问题、总结文档等能力。然而&#xff0c;虽然 LLM 的能力令人印象深刻…...

【Linux】:进程创建与终止

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux程序地址空间的相关知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从…...

横截面交易策略:概念与示例

数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学&#xff0c;点击下方链接报名&#xff1a; 量化投资速成营&#xff08;入门课程&#xff09; Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…...

4.2 投影

一、投影和投影矩阵 我们以下面两个问题开始&#xff0c;问题一是为了展示投影是很容易视觉化的&#xff0c;问题二是关于 “投影矩阵”&#xff08;projection matrices&#xff09;—— 对称矩阵且 P 2 P P^2P P2P。 b \boldsymbol b b 的投影是 P b P\boldsymbol b Pb。…...

23种设计模式之装饰者模式

深入理解装饰者模式 一、装饰者模式简介1.1 定义1.2 模式类型1.3 主要作用1.4 优点1.5 缺点 二、模式动机三、模式结构四、 装饰者模式的实现4.1 组件接口4.2 具体组件4.3 装饰者抽象类4.4 具体装饰者4.5 使用装饰者模式4.6 输出结果&#xff1a; 五、 应用场景5.1 图形用户界面…...

数据结构--单链表实现

欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种&#xff0c;但是顺序表在物理结构和逻辑结构上都是连续的&#xff0c;但链表在逻辑结构上是连续的&#xff0c;而在物理结构上不一定连续&#xff1b;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…...

2024攻防演练:亚信安全推出MSS/SaaS短期定制服务

随着2024年攻防演练周期延长的消息不断传出&#xff0c;各参与方将面临前所未有的挑战。面对强大的攻击队伍和日益严格的监管压力&#xff0c;防守单位必须提前进行全面而周密的准备和部署。为应对这一形势&#xff0c;亚信安全特别推出了为期三个月的MSS/SaaS短期订阅方案。该…...

基于java+springboot+vue实现的在线课程管理系统(文末源码+Lw)236

摘要 本文首先介绍了在线课程管理系统的现状及开发背景&#xff0c;然后论述了系统的设计目标、系统需求、总体设计方案以及系统的详细设计和实现&#xff0c;最后对在线课程管理系统进行了系统检测并提出了还需要改进的问题。本系统能够实现教师管理&#xff0c;科目管理&…...

每日一更 EFK日志分析系统

需要docker和docker-compose环境 下面时docker-compose.yaml文件 [rootnode1 docker-EFK]# cat docker-compose.yaml version: 3.3services:elasticsearch:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.5"container_name: elasticsearchrestart: …...

python类继承和类变量

Python一些类继承和实例变量的使用 定义基类 class APIException:code 500msg "Sorry, error"error_code 999def __init__(self, msgNone):print("APIException init ...")def error_400(self):pass复用基类的属性值 class ClientTypeError(APIExcept…...

js 随机生成整数

随机生成一个唯一的整数 id export const randomId () > { return Date.now() Math.floor(Math.random() * 10000) } 生成随机ID的方法 // 随机生成0 - 9999 export const randomId ()> { return Math.floor(Math.random() * 10000).toString() } // 随机生成0-999之…...

深入Django(七)

Django的数据库迁移系统 引言 在前六天的教程中&#xff0c;我们介绍了Django的基本概念、模型、视图、模板、URL路由和表单系统。今天&#xff0c;我们将讨论Django的数据库迁移系统&#xff0c;它是管理和跟踪数据库变化的关键组件。 Django数据库迁移概述 Django的数据库…...

【区分vue2和vue3下的element UI Steps 步骤条组件,分别详细介绍属性,事件,方法如何使用,并举例】

在 Vue 2 和 Vue 3 中&#xff0c;Element UI&#xff08;针对 Vue 2&#xff09;和 Element Plus&#xff08;针对 Vue 3&#xff09;提供了 Steps 步骤条组件&#xff0c;用于展示当前操作的进度步骤。虽然这两个库都提供了步骤条组件&#xff0c;但它们在属性、事件和方法的…...

uni-app x 跨平台开发框架

目录 uni-app x 是什么 和Flutter对比 uts语言 uvue渲染引擎 组合式API的写法 选项式API写法 页面生命周期 API pages.json全局配置文件 总结 uni-app x 是什么 uni-app x&#xff0c;是下一代 uni-app&#xff0c;是一个跨平台应用开发引擎。 uni-app x 是一个庞…...

YOLOv8模型调参---数据增强

目录 1.数据预处理 2.数据增强 2.1 数据增强的作用 2.2 数据增强方式与适用场景 2.2.1离线增强&#xff08;Offline Augmentation&#xff09; 2.2.2 在线增强&#xff08;Online Augmentation&#xff09; 3. 数据增强的具体方法 4. YOLOv8的数据增强 4.1 YOLOv8默认…...

【Nginx】docker运行Nginx及配置

Nginx镜像的获取 直接从Docker Hub拉取Nginx镜像通过Dockerfile构建Nginx镜像后拉取 二者区别 主要区别在于定制化程度和构建过程的控制&#xff1a; 直接拉取Nginx镜像&#xff1a; 简便性&#xff1a;直接使用docker pull nginx命令可以快速拉取官方的Nginx镜像。这个过程…...

tensorflow和numpy的版本

查看cuda版本 dpkg -l | grep cuda i libcudart11.0:amd64 11.5.117~11.5.1-1ubuntu1 amd64 NVIDIA CUDA Runtime Library ii nvidia-cuda-dev:amd64 11.5.1-1ubuntu1 …...

二维Gamma分布的激光点云去噪

目录 1、Gamma 分布简介2、实现步骤 1、Gamma 分布简介 Gamma 分布在合成孔径雷达( Synthetic Aperture &#xff32;adar&#xff0c;SA&#xff32;) 图像分割中具有广泛应用&#xff0c;较好的解决了SA&#xff32; 图像中相干斑噪声对图像分割的影响。采用二维Gamma 分布对…...

鸿蒙笔记导航栏,路由,还有axios

1.导航组件 导航栏位置可以调整&#xff0c;导航栏位置 Entry Component struct t1 {build() {Tabs(){TabContent() {Text(qwer)}.tabBar("首页")TabContent() {Text(发现内容)}.tabBar(发现)TabContent() {Text(我的内容)}.tabBar("我的")}// 做平板适配…...