算法系列--分治排序|再谈快速排序|快速排序的优化|快速选择算法
前言:本文就前期学习快速排序算法的一些疑惑点进行详细解答,并且给出基础快速排序算法的优化版本
一.再谈快速排序
快速排序算法的核心是分治思想,分治策略分为以下三步:
- 分解:将原问题分解为若干相似,规模较小的子问题
- 解决:如果子问题规模较小,直接解决;否则递归解决子问题
- 合并:原问题的解等于若干子问题解的合并
应用到快速排序算法:
- 分解:快速排序算法要实现的是对整个数组进行排序,但是规模较大,要想办法减少规模;他的解决策略是"选择一个基准元素,将数组划分为两部分,左边都是小于基准元素,右边都是大于基准元素",不断的重复上述过程,就能完成对整个数组的排序.对整个数组完成一次这样的操作后,再对左右两个区间分别执行上述过程
- 递归地对两个子数组进行快速排序,直到每个子数组的长度为0或1,此时数组已经有序。
- 由于在递归过程中子数组已经被分别排序,因此不需要再进行额外的合并步骤。
二.代码实现和细节讲解
快速排序的关键代码在于如何根据基准元素划分数组区间(parttion),分解的方法有很多,这里只提供一种方法挖坑法
代码:
class Solution {public int[] sortArray(int[] nums) {quick(nums, 0, nums.length - 1);return nums;}private void quick(int[] arr, int start, int end) {if(start >= end) return;// 递归结束条件int pivot = parttion(arr, start, end);// 递归解决子问题quick(arr, start, pivot - 1);quick(arr, pivot + 1, end);}// 挖坑法进行分解private int parttion(int[] arr, int left, int right) {int key = arr[left];while(left < right) {while(left < right && arr[right] >= key) right--;arr[left] = arr[right];while(left < right && arr[left] <= key) ++left;arr[right] = arr[left];}arr[left] = key;return left;}}
细节解答:
1.为什么start>=end是递归结束条件?
不断的分解子问题,最终子问题的规模大小是1,即只有一个元素,此时无需继续进行分解,start和end指针同时指向该元素
2.为什么要right先走?而不是left先走?
具体谁先走取决于
基准元素的位置,在上述代码中,基准元素(key)是最左边的元素,如果先移动left,left先遇到一个比基准元素大的元素,此时执行arr[right] = arr[left],由于没有保存arr[right],这个元素就会丢失
如果先走right,right先遇到一个比基准元素小的元素,此时执行arr[left]=arr[right],因为此时left并没有移动,还是pivot,但是pivot已经被我们使用key进行保存了
3.为什么是arr[right]>=key?>不行吗
大于等于主要是为了处理
重复元素问题
例如有数组[6,6,6,6,6]如果是>,right指针不会发生移动,left指针也不会发生移动,此时陷于死循环
4.为什么叫做挖坑法
当r指针遇到第一个<pivot的元素后停止,执行
arr[r] = arr[l],此时l位置就空白出来,形成了一个坑
三.快速排序的优化
主要有两个优化方向:
- 基准值pivot的选取,可以证明的是当随机选取基准值时,快速排序的时间复杂度趋近于
O(N*logN),即最好的时间复杂度 - 重复元素的处理:如果区间内部有大量的重复元素,上述版本的快速排序算法会对相同的元素重复执行多次;为了减少冗余的操作,使用
数组分三块的思想解决,同时如果遇到特殊的测试用例(顺序数组或逆序数组)时间复杂度会退化到O(N^2)
先根据一道题目(颜色分类)了解什么是数组分三块
分析

代码:
class Solution {public void sortColors(int[] nums) {// 分治 --// 1.定义三指针int i = 0;// 遍历整个数组int l = -1, r = nums.length;while(i < r) {if(nums[i] == 0) swap(nums,++l,i++);else if(nums[i] == 1) i++;else swap(nums,--r,i);}return;}private void swap(int[] nums,int x,int y) {int tmp = nums[x]; nums[x] = nums[y]; nums[y] = tmp;}
}
- 注意
l,r的起始位置,第一个元素和最后一个元素在开始的时候属于未处理状态,所以`l,r不能指向这两个元素,必须在区间之外 - 所谓的数组分三块,就是使用
三个指针去分别维护四个区间,其中的一个区间是未处理区间,随着cur指针的不断移动,所有的区间都被处理,最终也就只有三个区间
将上述思路应用于快速排序的parttion中,最终的结果就是划分为三个区间

代码实现:
class Solution {// 快速排序优化版// 分解--解决--合并public int[] sortArray(int[] nums) {qsort(nums, 0, nums.length - 1);return nums;}private void qsort(int[] nums, int start, int end) {if(start >= end) return;// 递归结束条件// 分解int pivot = nums[start];int l = start - 1, r = end + 1, i = start;while(i < r) {int cur = nums[i];if(cur < pivot) swap(nums, ++l, i++);else if(cur == pivot) ++i;else swap(nums, --r, i);}// [start, l] [l+1, r-1] [r, end]// 递归解决qsort(nums, start, l);qsort(nums, r, end);}private void swap(int[] nums,int i, int j) {int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp;}
}

2.随机选取基准值
采用随机数的方式随机选取基准值
int pivot = nums[start + new Random().nextInt(end - start + 1)];// 起始位置 随机产生的偏移量
完整的改进代码:
class Solution {// 快速排序优化版// 分解--解决--合并public int[] sortArray(int[] nums) {qsort(nums, 0, nums.length - 1);return nums;}private void qsort(int[] nums, int start, int end) {if(start >= end) return;// 递归结束条件// 分解int pivot = nums[start + new Random().nextInt(end - start + 1)];int l = start - 1, r = end + 1, i = start;while(i < r) {int cur = nums[i];if(cur < pivot) swap(nums, ++l, i++);else if(cur == pivot) ++i;else swap(nums, --r, i);}// [start, l] [l+1, r-1] [r, end]// 递归解决qsort(nums, start, l);qsort(nums, r, end);}private void swap(int[] nums,int i, int j) {int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp;}
}

- 效率明显提升
四.快速选择算法
快速选择算法是基于快速排序优化版本的一种时间复杂度可达到O(N)的选择算法,使用场景为第K大/前K大之类的选择问题
01.数组中的第K个最大的元素
链接:https://leetcode.cn/problems/kth-largest-element-in-an-array/
分析
- 暴力解法就是直接使用
sort进行排序,然后返回第K大即可 - 时间复杂度:
O(N*logN) - 空间复杂度:
O(logN)递归产生的栈调用
接下来采用快速选择算法,实现O(N)的时间复杂度
代码:
class Solution {public int findKthLargest(int[] nums, int k) {return qsort(nums, 0, nums.length - 1, k);}private int qsort(int[] nums, int start, int end, int k) {if(start >= end) return nums[start];int pivot = nums[start + new Random().nextInt(end - start + 1)];// 数组分三块 <pivot ==pivot >pivotint l = start - 1, r = end + 1, i = start;while(i < r) {if(nums[i] < pivot) swap(nums, ++l, i++);else if(nums[i] == pivot) ++i;else swap(nums, --r, i);}// [start, l] [l+1, r - 1] [r, end]int c = end - r + 1, b = r - 1 - (l + 1) + 1, a = l - start + 1;// 分情况讨论 进行选择if(c >= k) return qsort(nums, r, end, k);else if(b + c >= k) return pivot;else return qsort(nums, start, l, k - b - c);// 找较小区间的第(k-b-c)大}private void swap(int[] arr, int i, int j) {int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp;}
}
- 快速选择算法和快速排序的思想很像,不同点在于快速选择算法只对每次parttion结果的一部分区间进行递归,而不是像快速排序一样对整个区间进行递归,所以快速选择算法的时间复杂度降到了
O(N)
相关文章:
算法系列--分治排序|再谈快速排序|快速排序的优化|快速选择算法
前言:本文就前期学习快速排序算法的一些疑惑点进行详细解答,并且给出基础快速排序算法的优化版本 一.再谈快速排序 快速排序算法的核心是分治思想,分治策略分为以下三步: 分解:将原问题分解为若干相似,规模较小的子问题解决:如果子问题规模较小,直接解决;否则递归解决子问题合…...
强化学习编程实战-1-一个及其简单的强化学习实例(多臂赌博机)
1.1 多臂赌博机 一台拥有K个臂的机器,玩家每次可以摇动K个臂中的一个,摇动后,会吐出数量不等的金币,吐出金币的数量服从一定的概率分布,而且不同臂的概率分布不同。 多臂赌博机的问题是:假设玩家共有N次摇地…...
Golang语法规范和风格指南(一)——简单指南
1. 前引 一个语言的规范的学习是重要的,直接关系到你的代码是否易于维护和理解,同时学习好对应的语言规范可以在前期学习阶段有效规避该语言语法和未知编程风格的冲突。 这里是 Google 提供的规范,有助于大家在开始学习阶段对 Golang 进行一…...
数据机构记录顺序表-笔记1
一、线性表的基本概念 数据元素:线性表中的基本单位,每个元素都是线性表的一部分。 数据项:数据元素的具体值。 存储位置:线性表中的元素在内存中的具体存储位置。 线性表按存储结构可以分为顺序表和链表两大类: 1.1…...
考研必备~总结严蔚敏教授《数据结构》课程的重要知识点及考点
作者主页:知孤云出岫 目录 1. 基本概念1.1 数据结构的定义1.2 抽象数据类型 (ADT) 2. 线性表2.1 顺序表2.2 链表 3. 栈和队列3.1 栈3.2 队列 4. 树和二叉树4.1 树的基本概念4.2 二叉树 5. 图5.1 图的基本概念5.2 图的遍历 6. 查找和排序6.1 查找6.2 排序 7. 重点考…...
【数据分享】国家级旅游休闲街区数据(Excel/Shp格式/免费获取)
之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据(可查看之前的文章获悉详情)!文化和旅游部官网上也分享有很多与旅游相关的常用数据,我们基于官网发布的名单文件整理得到全国…...
Linux开发:进程间通过Unix Domain Socket传递数据
进程间传递数据的方式有很多种,Linux还提供一种特殊的Socket用于在多进程间传递数据,就是Unix Domain Socket(UDS)。 虽然通过普通的Socket也能做到在多进程间传递数据,不过这样需要通过协议栈层的打包与拆包,未免有些浪费效率,通过UDS,数据仅仅通过一个特殊的sock文件…...
Redis基础教程(九):redis有序集合
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝Ὁ…...
Servlet与Servlet容器
什么是Servlet? Servlet是Java EE(现称Jakarta EE)中的一个组件,通常用于创建动态Web内容。Servlet是运行在Web服务器上的Java程序,它处理客户端的请求并生成响应。Servlet的核心功能是处理HTTP请求和响应。下面是一个servlet例…...
腾讯centos mysql安装
腾讯centos mysql安装 腾讯云提供了一系列的云计算服务,包括操作系统、数据库、服务器等。在腾讯云上安装CentOS操作系统和MySQL数据库可以按照以下步骤进行: 登录腾讯云控制台(登录 - 腾讯云)。在控制台页面上方的搜索框中输入…...
c_各个unsigned int 和 int的取值范围
bool, uint8_t, uint16_t, uint32_t, uint64_t, int8_t, int16_t, int32_t, int64_t 取值范围分别是什么? 定义形式: typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; typedef unsigned long uint64_…...
C#/WPF 自制截图工具
在日常使用电脑办公时,我们经常遇到需要截图然后保存图片,我们往往需要借助安装截图工具才能实现,现在我们通过C#自制截图工具,也能够轻松进行截图。 我们可以通过C#调用WindousAPI来实现截图,实例代码如下:…...
以腾讯为例,手把手教你搭建产品帮助中心
一个精心设计的产品帮助中心对于提高用户满意度和体验至关重要。腾讯,作为全球领先的互联网企业,通过其多样化的产品线(包括微信、QQ、腾讯游戏、腾讯视频等)吸引了亿万用户。下面将以腾讯为例,向您展示如何搭建一个高…...
计算机网络概述--自我学习用
计算网络体系概述 相关问题 计算机网络为什么要分层?计算机网络是怎么分层的?三种计算机网络模型的关系是什么?每一层分别包含哪些协议?计算机网络中,数据如何在各层中传播?数据在网络各层中的存在形式是…...
超级好用的java http请求工具
kong-http 基于okhttp封装的轻量级http客户端 使用方式 Maven <dependency><groupId>io.github.kongweiguang</groupId><artifactId>kong-http</artifactId><version>0.1</version> </dependency>Gradle implementation …...
在原有的iconfont.css文件中加入新的字体图标
前言:在阿里图标库中,如果你没有这个字体图标的线上项目,那么你怎么在本地项目中的原始图标文件中添加新的图标呢? 背景:现有一个vue项目,下面是这个前端项目的字体图标文件。现在需要新开发功能页&#x…...
使用 ESP32-WROOM + DHT11 做个无屏温湿度计
最近梅雨天,有个房间湿度很大,而我需要远程查看温湿度,所以无所谓有没有显示屏,某宝上的温湿度计都是带屏的,如果连WIFI查看温湿度操作也比较麻烦,还需要换电池,实在不能满足我的需求࿰…...
如何使用 SwiftUI 构建 visionOS 应用
文章目录 前言WindowsVolumes沉浸式空间结论 前言 Apple Vision Pro 即将推出,现在是看看 SwiftUI API 的完美时机,这使我们能够将我们的应用程序适应 visionOS 提供的沉浸式世界。苹果表示,构建应用程序的最佳方式是使用 Swift 和 SwiftUI。…...
InspireFace-商用级的跨平台开源人脸分析SDK
InspireFace-商用级的跨平台开源人脸分析SDK InspireFaceSDK是由insightface开发的⼀款⼈脸识别软件开发⼯具包(SDK)。它提供了⼀系列功能,可以满⾜各种应⽤场景下的⼈脸识别需求,包括但不限于闸机、⼈脸⻔禁、⼈脸验证等。 该S…...
华为HCIP Datacom H12-821 卷24
1.单选题 企业大楼有大量员工通常都在上班时在大厅开始接入到公司的WLAN网络,随着每位员工走到各自的工位过程中,每个人的移动端叶通过漫游的方式漫游到各自的网络覆盖区域。为了尽量保证每个终端的IP地址是固定的,建议的做法是? A、配置VLAN Pool并配置顺序算法 B、…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
