当前位置: 首页 > news >正文

基于深度学习LightWeight的人体姿态检测跌倒系统源码

一. LightWeight概述

        light weight openpose是openpose的简化版本,使用了openpose的大体流程。

        Light weight openpose和openpose的区别是:

        a 前者使用的是Mobilenet V1(到conv5_5),后者使用的是Vgg19(前10层)。

        b 前者部分层使用了空洞卷积(dilated convolution)来提升感受视野,后者使用一般的卷积。

        c 前者卷积核大小为3*3,后者为7*7。

        d 前者只有一个refine stage,后者有5个stage。

        e 前者的initial stage和refine stage里面的两个分支(hotmaps和pafs)使用权值共享,后者则是并行的两个分支

二. LightWeight的网络结构

        openpose的每个stage使用下图中左侧的两个并行的分支,分别预测hotmaps和pafs,为了进一步降低计算量,light weight openpose中将前几层进行权值共享,如下图右侧所示。

        其网络流程:

三. LightWeight的网络结构代码

import torch
from torch import nnfrom modules.conv import conv, conv_dw, conv_dw_no_bnclass Cpm(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.align = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)self.trunk = nn.Sequential(conv_dw_no_bn(out_channels, out_channels),conv_dw_no_bn(out_channels, out_channels),conv_dw_no_bn(out_channels, out_channels))self.conv = conv(out_channels, out_channels, bn=False)def forward(self, x):x = self.align(x)x = self.conv(x + self.trunk(x))return xclass InitialStage(nn.Module):def __init__(self, num_channels, num_heatmaps, num_pafs):super().__init__()self.trunk = nn.Sequential(conv(num_channels, num_channels, bn=False),conv(num_channels, num_channels, bn=False),conv(num_channels, num_channels, bn=False))self.heatmaps = nn.Sequential(conv(num_channels, 512, kernel_size=1, padding=0, bn=False),conv(512, num_heatmaps, kernel_size=1, padding=0, bn=False, relu=False))self.pafs = nn.Sequential(conv(num_channels, 512, kernel_size=1, padding=0, bn=False),conv(512, num_pafs, kernel_size=1, padding=0, bn=False, relu=False))def forward(self, x):trunk_features = self.trunk(x)heatmaps = self.heatmaps(trunk_features)pafs = self.pafs(trunk_features)return [heatmaps, pafs]class RefinementStageBlock(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.initial = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)self.trunk = nn.Sequential(conv(out_channels, out_channels),conv(out_channels, out_channels, dilation=2, padding=2))def forward(self, x):initial_features = self.initial(x)trunk_features = self.trunk(initial_features)return initial_features + trunk_featuresclass RefinementStage(nn.Module):def __init__(self, in_channels, out_channels, num_heatmaps, num_pafs):super().__init__()self.trunk = nn.Sequential(RefinementStageBlock(in_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels))self.heatmaps = nn.Sequential(conv(out_channels, out_channels, kernel_size=1, padding=0, bn=False),conv(out_channels, num_heatmaps, kernel_size=1, padding=0, bn=False, relu=False))self.pafs = nn.Sequential(conv(out_channels, out_channels, kernel_size=1, padding=0, bn=False),conv(out_channels, num_pafs, kernel_size=1, padding=0, bn=False, relu=False))def forward(self, x):trunk_features = self.trunk(x)heatmaps = self.heatmaps(trunk_features)pafs = self.pafs(trunk_features)return [heatmaps, pafs]class PoseEstimationWithMobileNet(nn.Module):def __init__(self, num_refinement_stages=1, num_channels=128, num_heatmaps=19, num_pafs=38):super().__init__()self.model = nn.Sequential(conv(     3,  32, stride=2, bias=False),conv_dw( 32,  64),conv_dw( 64, 128, stride=2),conv_dw(128, 128),conv_dw(128, 256, stride=2),conv_dw(256, 256),conv_dw(256, 512),  # conv4_2conv_dw(512, 512, dilation=2, padding=2),conv_dw(512, 512),conv_dw(512, 512),conv_dw(512, 512),conv_dw(512, 512)   # conv5_5)self.cpm = Cpm(512, num_channels)self.initial_stage = InitialStage(num_channels, num_heatmaps, num_pafs)self.refinement_stages = nn.ModuleList()for idx in range(num_refinement_stages):self.refinement_stages.append(RefinementStage(num_channels + num_heatmaps + num_pafs, num_channels,num_heatmaps, num_pafs))def forward(self, x):backbone_features = self.model(x)backbone_features = self.cpm(backbone_features)stages_output = self.initial_stage(backbone_features)for refinement_stage in self.refinement_stages:stages_output.extend(refinement_stage(torch.cat([backbone_features, stages_output[-2], stages_output[-1]], dim=1)))return stages_output

四. LightWeight是怎么去识别跌倒呢

        LightWeight可以检测到人体的关键点,所以可以通过两种方式来判断是否跌倒,第一种方法是通过计算角度,第二种方式,是通过判断整体的关键点(把抠出的关键点图送入到分类网络),本文的做法是第二种方式

五. LightWeight的演示效果(具有图片和摄像头识别功能)

六. 整个工程的内容

提供源代码,模型,提供GUI界面代码

代码的下载路径(新窗口打开链接)基于深度学习LightWeight的人体姿态检测跌倒系统源码

有问题可以私信或者留言,有问必答

相关文章:

基于深度学习LightWeight的人体姿态检测跌倒系统源码

一. LightWeight概述 light weight openpose是openpose的简化版本,使用了openpose的大体流程。 Light weight openpose和openpose的区别是: a 前者使用的是Mobilenet V1(到conv5_5),后者使用的是Vgg19(前10…...

SpringBoot 生产实践:没有父 starter 的打包问题

文章目录 前言一、搜索引擎二、Chat GPT三、官方文档四、小结推荐阅读 前言 今天刚准备写点文章,需要 SpringBoot 项目来演示效果。一时心血来潮,没有采用传统的方式(即通过引入 spring-boot-starter-parent 父工程的方式)。 &l…...

IDEA配Git

目录 前言 1.创建Git仓库,获得可提交渠道 2.选择本地提交的项目名 3.配置远程仓库的地址 4.新增远程仓库地址 5.开始进行commit操作 6.push由于邮箱问题被拒绝的解决方法: 后记 前言 以下操作都是基于你已经下载了Git的前提下进行的&#xff0c…...

51单片机STC89C52RC——14.1 直流电机调速

目录 目的/效果 1:电机转速同步LED呼吸灯 2 通过独立按键 控制直流电机转速。 一,STC单片机模块 二,直流电机 2.1 简介 2.2 驱动电路 2.2.1 大功率器件直接驱动 2.2.2 H桥驱动 正转 反转 2.2.3 ULN2003D 引脚、电路 2.3 PWM&…...

AI对于高考和IT行业的深远影响

目录 AI对IT行业的冲击及深远影响1. 工作自动化2. 新的就业机会3. 行业融合4. 技术升级和创新5. 数据的重要性 IT行业的冬天要持续多久?大学的软件开发类专业是否还值得报考?其他问题IT行业是否都是加班严重?35岁后就业困难是否普遍现象&…...

C语言下的文件详解

主要内容 文件概述文件指针文件的打开与关闭文件的读写 文件 把输入和输出的数据以文件的形式保存在计算机的外存储器上,可以确保数据能随时使用,避免反复输入和读取数据 文件概述 文件是指一组相关数据的有序集合 文件是存储数据的基本单位&#…...

Oracle PL / SQL块结构

在PL / SQL中,最小的有意义的代码分组被称为块。 块代码为变量声明和异常处理提供执行和作用域边界。 PL / SQL允许您创建匿名块和命名块。 命名块可以是包,过程,函数,触发器或对象类型。 PL / SQL是SQL的过程语言扩展&#x…...

MySQL的安装和启动

安装 版本 1,社区版:免费,不提供任何技术支持 2,商业版:可以试用30天,官方提供技术支持下载 1,下载地址:https://dev.mysql.com/downloads/mysql/ 2,安装:傻…...

Prometheus概述

1.什么是prometheus Prometheus 是一个开源的服务监控系统和时序数据库,其提供了通用的数据模型和快捷数据采集、存储和查询接口。它的核心组件Prometheus server会定期从静态配置的监控目标或者基于服务发现自动配置的自标中进行拉取数据,当新拉取到的…...

【SQL】什么是最左前缀原则/最左匹配原则

最左前缀原则(或最左匹配原则)是关系型数据库在使用复合索引时遵循的一条重要规则。该原则指的是,当查询条件使用复合索引时,查询优化器会首先使用索引的最左边的列,依次向右匹配,直到不再满足查询条件为止…...

java项目配置logback日志

在resource目录下添加logback配置文件 <?xml version"1.0" encoding"UTF-8"?> <configuration scan"true" scanPeriod"60 seconds" debug"false"><property name"log_dir" value"/APL/log…...

Python入门 2024/7/6

目录 元组的定义和操作 字符串的定义和操作 字符串 字符串的替换 字符串的分割 字符串的规整操作&#xff08;去除前后空格&#xff09; 字符串的规整操作&#xff08;去掉前后指定字符串&#xff09; 操作 字符串的替换 字符串的分割 字符串的规整操作 统计字符串的…...

ChatGPT4深度解析:探索智能对话新境界

大模型chatgpt4分析功能初探 目录 1、探测目的 2、目标变量分析 3、特征缺失率处理 4、特征描述性分析 5、异常值分析 6、相关性分析 7、高阶特征挖掘 1、探测目的 1、分析chat4的数据分析能力&#xff0c;提高部门人效 2、给数据挖掘提供思路 3、原始数据&#xf…...

触底加载的两种思路(以vue3前端和nodejs后端为例)

一:首先,nodejs后端的代码都是一样的. 需要前端返回page参数,然后nodejs逻辑进行处理,截取页数和每页条数和总条数, 总条数用来作为判断是否有数据的条件,也可以不用,注意看下文 一:不用获取容器高度的. pinia中进行的axios请求处理 在vue文件中进行pinia中数据的导入,继续进…...

tobias实现支付宝支付

tobias是一个为支付宝支付SDK做的Flutter插件。 如何使用 你需要在pubspec.yaml中配置url_scheme。url_scheme是一个独特的字符串&#xff0c;用来重新启动你的app&#xff0c;但是请注意字符串“_”是不合法的。 在iOS端&#xff0c;你还需要配置并传入一个universal link。…...

【音视频 | RTSP】RTSP协议详解 及 抓包例子解析(详细而不赘述)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

SQL Server 2022 中的 Tempdb 性能改进非常显著

无论是在我的会话中还是在我写的博客中&#xff0c;Tempdb 始终是我的话题。然而&#xff0c;当谈到 SQL Server 2022 中引入的重大性能变化时&#xff0c;我从未如此兴奋过。他们解决了我们最大的性能瓶颈之一&#xff0c;即系统页面闩锁并发。 在 SQL Server 2019 中&#x…...

C++ Lambda表达式第二篇, Lambda表达式

C Lambda表达式 Lambda 捕获含有模板参数的Lambda表达式无模板参数的Lambda表达式 Lambda 捕获 captures是零个或多个捕获的逗号分隔列表&#xff0c;可以选择以capture-default开头。捕获列表定义可从 lambda 函数体内访问的外部变量。唯一的捕获默认值是 &&#xff0c;…...

Linux系统的介绍和常用命令

文章目录 介绍常用命令文件和目录操作文件内容操作系统管理命令网络命令 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;Liunx系统 ✨文章内容&#xff1a;Liunx系统介绍 &…...

IDEA安装IDE Eval Reset插件,30天自动续期,无限激活

第一步&#xff1a; 下载idea 注意&#xff1a;版本要是2021.2.2以下 第二步&#xff1a;快捷键CtrlAlts打开设置 第三步&#xff1a;打开下图中蓝色按钮 第四步&#xff1a;点击弹窗的 “” &#xff0c;并输入 plugins.zhile.io 点击 “ok” 第五步&#xff1a;搜索IDE Ea…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...