【机器学习】基于密度的聚类算法:DBSCAN详解
🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
- 基于密度的聚类算法:DBSCAN详解
- 引言
- DBSCAN的基本概念
- 点的分类
- 聚类过程
- DBSCAN的参数
- DBSCAN的优势
- DBSCAN的局限性
- 实践案例
- 数据准备
- 应用DBSCAN
- 可视化结果
- 结论
基于密度的聚类算法:DBSCAN详解

引言
在数据科学和机器学习领域中,聚类是一种常见的无监督学习技术,用于发现数据集中的自然分组或结构。传统的聚类算法,如K-means,依赖于预定义的簇数量和球形簇假设,这限制了它们在复杂数据集上的表现。相比之下,基于密度的聚类算法,尤其是DBSCAN(Density-Based Spatial Clustering of Applications with Noise),能够识别任意形状的簇,并能有效地处理噪声点。本文将深入探讨DBSCAN的工作原理、参数选择、优势与局限性,以及其在实际应用中的表现。
DBSCAN的基本概念
点的分类
在DBSCAN中,数据点被分为三类:
- 核心点:在一个指定半径内(Eps)至少有MinPts个邻居点。
- 边界点:虽然它自身不是核心点,但位于某个核心点的Eps邻域内。
- 噪声点:既不是核心点也不是边界点。
聚类过程

DBSCAN从数据集中随机选取一个未访问的点开始,如果该点是核心点,则它和它的所有直接可达的点形成一个簇。如果一个点既不是核心点也不是边界点,则标记为噪声点。这一过程会重复进行,直到所有点都被访问过。
DBSCAN的参数
DBSCAN有两个关键参数:Eps(ε)和MinPts。
- Eps:定义了邻域的大小,即两个点被认为是“接近”的最大距离。
- MinPts:在Eps邻域内至少需要的点数来定义一个核心点。
正确选择这两个参数对于DBSCAN的成功至关重要。通常,Eps可以通过计算所有点之间的平均距离来估计,而MinPts则可以根据数据的维度和稀疏性来确定。
DBSCAN的优势
- 处理任意形状的簇:DBSCAN不需要簇具有球形或凸形,可以识别出任意形状的簇。
- 自动检测噪声:通过定义核心点和边界点,DBSCAN能够有效地识别并分离噪声点。
- 无需预定义簇的数量:与K-means等算法不同,DBSCAN不需要事先知道簇的数量。

DBSCAN的局限性
- 对参数敏感:不合适的Eps和MinPts值可能导致聚类效果不佳。
- 处理高维数据的挑战:在高维空间中,由于“维度灾难”,点之间的距离变得不那么有意义,导致DBSCAN性能下降。
- 对变量尺度敏感:特征之间的尺度差异可能会影响聚类结果。
实践案例
数据准备
首先,我们需要一个数据集。可以使用Python的scikit-learn库生成一个包含多个簇的数据集。
from sklearn.datasets import make_moons
X, _ = make_moons(n_samples=300, noise=0.05)
应用DBSCAN
使用sklearn.cluster.DBSCAN来应用算法。
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.3, min_samples=10).fit(X)
可视化结果
利用matplotlib库可视化聚类结果。
import matplotlib.pyplot as plt
plt.scatter(X[:,0], X[:,1], c=dbscan.labels_)
plt.show()
结论
DBSCAN作为一种基于密度的聚类算法,为处理复杂数据集提供了一种强大的工具。通过合理选择参数,它能够有效地识别数据中的自然分组,即使在存在噪声的情况下也能保持良好的性能。然而,其对参数的选择敏感性和在高维数据上的局限性也是在实际应用中需要注意的问题。
通过对DBSCAN的理解和应用,我们不仅能够更好地解析数据的内在结构,还能进一步探索数据科学领域的其他高级主题,如异常检测和模式识别。
相关文章:
【机器学习】基于密度的聚类算法:DBSCAN详解
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 基于密度的聚类算法:DBSCAN详解引言DBSCAN的基本概念点的分类聚类过…...
Qt 网络编程 网络信息获取操作
学习目标:网络信息获取操作 前置环境 运行环境:qt creator 4.12 学习内容 一、Qt 网络编程基础 Qt 直接提供了网络编程模块,包括基于 TCP/IP 的客户端和服务器相关类,如 QTcpSocket/QTcpServer 和 QUdpSocket,以及实现 HTTP、FTP 等协议的高级类,如 QNetworkRe…...
linux中的进程以及进程管理
程序和进程的区别和联系 程序(Program): 程序是一组指令的集合,通常存储在磁盘或其他存储设备上,是一种静态的概念。程序本身并没有运行,它只是一个可执行的文件或脚本,包含了一系列的指令和数…...
pyecharts可视化案例大全(11~20)
pyecharts可视化案例大全(11~20) 十一、设置动画效果十二、直方图带视觉组件十三、设置渐变色(线性渐变)十四、设置渐变色(径向渐变)十五、设置分割线十六、设置分隔区域十七、面积图十八、堆叠面积图十九、自定义线样式二十、折线图平滑处理十一、设置动画效果 在图表加载前…...
Docker在人工智能领域的应用与实战
摘要 人工智能(AI)技术的快速发展带来了对高效开发和部署工具的需求。Docker作为一个创新的容器化平台,为AI领域提供了强大的支持。本文详细介绍了Docker在AI模型开发、训练、部署以及服务器集群管理等方面的应用,并探讨了其在数…...
python基础篇(8):异常处理
在Python编程中,异常是程序运行时发生的错误,它会中断程序的正常执行流程。异常处理机制使得程序能够捕获这些错误,并进行适当的处理,从而避免程序崩溃。 1 错误类型 代码的错误一般会有语法错误和异常错误两种,语法错…...
FortiClient 用IPsec VPN 远程拨号到FortiGate说明文档
说明:本文档针对IPsec VPN 中的Remote VPN 进行说明,即远程用户使用PC中的FortiClient软件,通过VPN拨号的方式连接到公司总部FortiGate设备,访问公司内部服务器。在配置之前需要统一VPN策略和参数,如模式… 说明&#…...
Git-Unity项目版本管理
目录 准备GitHub新建项目并添加ssh密钥Unity文件夹 本文记录如何用git对unity 项目进行版本管理,并可传至GitHub远端。 准备 名称版本windows11Unity2202.3.9.f1gitN.A.githubN.A. GitHub新建项目并添加ssh密钥 GitHub新建一个repositorywindows11 生成ssh-key&…...
每日一题~ leetcode 402 (贪心+单调栈)
click me! 这个贪心的推导在leetcode上已经很明确了。 click me! 删除k个数,可以先考虑删除一个数。这也是一种常见的思路。(如果进行同样的操作多次,可以先只 考虑一次操作如何实现,或者他的影响。完成这一次操作后,…...
设计模式之模版方法
模版方法介绍 模版方法(Template Method)模式是一种行为型设计模式,它定义了一个操作(模板方法)的基本组合与控制流程,将一些步骤(抽象方法)推迟到子类中,使得子类可以在…...
docker部署redis/mongodb/
一、redis 创建/root/redis/conf/redis.conf 全部执行命令如下 docker run -it -d --name redis -p 6379:6379 --net mynet --ip 172.18.0.9 -m 400m -v /root/redis/conf:/usr/local/etc/redis -e TXAsia/Shangehai redis redis-server /usr/local/etc/redis/redis.conf 部署…...
LeetCode 581. 最短无序连续子数组
更多题解尽在 https://sugar.matrixlab.dev/algorithm 每日更新。 组队打卡,更多解法等你一起来参与哦! LeetCode 581. 最短无序连续子数组,难度中等。 排序 解题思路:首先对数组排序,然后找出两侧顺序的数组&#x…...
数据库可视化管理工具dbeaver试用及问题处理。
本文记录了在内网离线安装数据库可视化管理工具dbeaver的过程和相关问题处理方法。 一、下载dbeaver https://dbeaver.io/download/ 笔者测试时Windows平台最新版本为:dbeaver-ce-24.1.1-x86_64-setup.exe 二、安装方法 一路“下一步”即可 三、问题处理 1、问…...
29、php实现和为S的两个数字(含源码)
题目:php 实现 和为S的两个数字 描述: 输入一个递增排序的数组和一个数字S,在数组中查找两个数, 是的他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。 输出描述: 对应每个测…...
Spring Boot中的全局异常处理
Spring Boot中的全局异常处理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何在Spring Boot应用中实现全局异常处理,这是保证应用…...
中英双语介绍美国苹果公司(Apple Inc.)
中文版 苹果公司简介 苹果公司(Apple Inc.)是一家美国跨国科技公司,总部位于加利福尼亚州库比蒂诺。作为全球最有影响力的科技公司之一,苹果以其创新的产品和设计引领了多个科技领域的变革。以下是对苹果公司发展历史、主要产品…...
C语言牢大坠机
目录 开头程序程序的流程图《牢大坠机》结尾 开头 大家好,我叫这是我58,今天,我们要来看关于牢大坠机的一些东西。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #define HIGH 66 #include <stdio.h> #include <Windows.h> int ma…...
zdppy+vue3+antd 实现表格单元格编辑功能
初步实现 <template><a-button class"editable-add-btn" style"margin-bottom: 8px" click"handleAdd">Add</a-button><a-table bordered :data-source"dataSource" :columns"columns"><templa…...
elasticsearch索引怎么设计
Primary Shard(主分片) Primary Shard(主分片)是索引数据存储的基本单位,承担着数据写入和查询的职责。以下是关于Primary Shard的一些关键点: 1. 数据分布:每个索引在创建时会被分成多个主分…...
React 中 useState 和 useReducer 的联系和区别
文章目录 使用场景使用 useState使用 useReducer 联系区别用法状态更新逻辑适用场景可读性和可维护性 使用场景 使用 useState 状态逻辑简单。只涉及少量的状态更新。需要快速和简单的状态管理。 使用 useReducer 状态逻辑复杂。涉及多个子状态或多种状态更新逻辑。需要更好…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
