当前位置: 首页 > news >正文

相关分析 - 肯德尔系数

肯德尔系数(Kendall’s Tau)是一种非参数统计方法,用于衡量两个变量之间的相关性。它是由统计学家莫里斯·肯德尔(Maurice Kendall)在1938年提出的。肯德尔系数特别适用于有序数据,可以用来评估两个有序变量之间的单调关系。


文章目录

      • 肯德尔系数的定义
      • 肯德尔系数的解释
      • 肯德尔系数的计算步骤
      • 肯德尔系数的优点和缺点
      • 应用场景
      • python 实现
        • 解释
        • 自定义实现


肯德尔系数的定义

肯德尔系数 τ \tau τ 的计算基于配对比较的概念。假设有两个变量 X X X Y Y Y,每个变量有 n n n 个观测值。肯德尔系数 τ \tau τ 的定义如下:

τ = C − D n ( n − 1 ) 2 \tau = \frac{C - D}{\frac{n(n-1)}{2}} τ=2n(n1)CD

其中:

  • C C C 是和谐配对的数量,即在 X X X Y Y Y 中同时增加或减少的配对数量。
  • D D D 是不和谐配对的数量,即在 X X X Y Y Y 中一个增加另一个减少的配对数量。
  • n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1) 是所有可能的配对数量。

肯德尔系数的解释

肯德尔系数 τ \tau τ 的取值范围在 -1 到 1 之间:

  • τ = 1 \tau = 1 τ=1 表示完全正相关,即所有配对都是和谐的。
  • τ = − 1 \tau = -1 τ=1 表示完全负相关,即所有配对都是不和谐的。
  • τ = 0 \tau = 0 τ=0 表示没有相关性,即和谐配对和不和谐配对的数量相等。

肯德尔系数的计算步骤

  1. 列出所有配对:对于 n n n 个观测值,列出所有可能的配对。
  2. 比较配对:对于每一对 ( X i , Y i ) (X_i, Y_i) (Xi,Yi) ( X j , Y j ) (X_j, Y_j) (Xj,Yj),判断是和谐的还是不和谐的。
  3. 计算和谐和不和谐配对的数量:统计和谐配对和不和谐配对的数量。
  4. 计算肯德尔系数:使用上述公式计算肯德尔系数 τ \tau τ

肯德尔系数的优点和缺点

优点

  • 适用于有序数据:肯德尔系数特别适用于有序数据,能够捕捉变量之间的单调关系。
  • 不受异常值影响:肯德尔系数对异常值不敏感,因此在存在异常值的情况下比皮尔逊相关系数更稳健。

缺点

  • 计算复杂度:对于大数据集,计算所有配对的复杂度较高。
  • 解释性:肯德尔系数的解释不如皮尔逊相关系数直观。

应用场景

肯德尔系数常用于社会科学、生物学、心理学等领域的研究中,特别是在需要评估两个有序变量之间关系的情况下。例如,在心理学研究中,可以使用肯德尔系数来评估两个评分者对同一组被试的评分一致性。


python 实现

首先,确保已经安装了scipy库。如果没有安装,可以使用以下命令进行安装:

pip install scipy

然后,可以使用以下代码来计算肯德尔系数:

import scipy.stats as stats# 示例数据
x = [1, 2, 3, 4, 5]
y = [1, 3, 2, 5, 4]# 计算肯德尔系数
tau, p_value = stats.kendalltau(x, y)print(f"肯德尔系数 (tau): {tau}")
print(f"p值: {p_value}")

在这个示例中,定义了两个有序变量xy,然后使用stats.kendalltau函数来计算之间的肯德尔系数和对应的p值。

解释
  • tau:肯德尔系数,表示两个变量之间的相关性。
  • p_value:p值,用于检验肯德尔系数是否显著。通常,如果p值小于0.05,则认为肯德尔系数是显著的。
自定义实现

如果想要自己实现肯德尔系数的计算,可以按照以下步骤进行:

def kendall_tau(x, y):n = len(x)if n != len(y):raise ValueError("x and y must have the same length")concordant = 0discordant = 0for i in range(n):for j in range(i + 1, n):if (x[i] < x[j] and y[i] < y[j]) or (x[i] > x[j] and y[i] > y[j]):concordant += 1elif (x[i] < x[j] and y[i] > y[j]) or (x[i] > x[j] and y[i] < y[j]):discordant += 1tau = (concordant - discordant) / (0.5 * n * (n - 1))return tau# 示例数据
x = [1, 2, 3, 4, 5]
y = [1, 3, 2, 5, 4]# 计算肯德尔系数
tau = kendall_tau(x, y)
print(f"肯德尔系数 (tau): {tau}")

在这个自定义实现中,定义了一个kendall_tau函数,该函数计算两个列表xy之间的肯德尔系数。函数首先检查两个列表的长度是否相同,然后计算和谐配对和不和谐配对的数量,最后计算肯德尔系数。


相关文章:

相关分析 - 肯德尔系数

肯德尔系数&#xff08;Kendall’s Tau&#xff09;是一种非参数统计方法&#xff0c;用于衡量两个变量之间的相关性。它是由统计学家莫里斯肯德尔&#xff08;Maurice Kendall&#xff09;在1938年提出的。肯德尔系数特别适用于有序数据&#xff0c;可以用来评估两个有序变量之…...

【咨询】企业数字档案馆(室)建设方案-模版范例

导读&#xff1a;本模版来源某国有大型医药行业集团企业数字档案馆&#xff08;室&#xff09;建设方案&#xff08;一期300W、二期250W&#xff09;&#xff0c;本人作为方案的主要参与者&#xff0c;总结其中要点给大家参考。 目录 1、一级提纲总览 2、项目概述 3、总体规…...

selfClass 与 superClass 的区别

在 Objective-C 中&#xff0c;[self class] 和 [super class] 都用于获取对象的类信息&#xff0c;但它们在运行时的行为略有不同。理解它们的区别有助于更好地掌握 Objective-C 的消息传递机制和继承关系。让我们详细解释这两个调用的区别。 [self class] 当你在一个对象方…...

秒懂设计模式--学习笔记(6)【创建篇-建造者模式】

目录 5、建造者模式5.1 介绍5.2 建造步骤的重要性5.3 地产开发商的困惑5.4 建筑施工方5.5 工程总监5.6 项目实施5.7 建造者模式的各角色定义5.8 建造者模式 5、建造者模式 5.1 介绍 建造者模式&#xff08;Builder&#xff09;又称为生成器模式&#xff0c;主要用于对复杂对象…...

领略超越王勃的AI颂扬艺术:一睹其惊艳夸赞风采

今日&#xff0c;咱也用国产AI技术&#xff0c;文心一言3.5的文字生成与可灵的图像创作&#xff0c;自动生成一篇文章&#xff0c;提示语文章末下载。 【玄武剑颂星际墨侠】 苍穹为布&#xff0c;星辰织锦&#xff0c;世间万象&#xff0c;皆入我玄武剑公众号之浩瀚画卷。此号…...

Linux走进网络

走进网络之网络解析 目录 走进网络之网络解析 一、认识计算机 1.计算机的发展 2.传输介质 3.客户端与服务器端的概念 交换机 路由器 二、计算机通信与协议 1. 协议的标准化 2. 数据包的传输过程 OSI 协议 ARP协议 3. TCP/IP:四层模型 4. TCP三次握手和四次挥手…...

go语言Gin框架的学习路线(六)

gin的路由器 Gin 是一个用 Go (Golang) 编写的 Web 框架&#xff0c;以其高性能和快速路由能力而闻名。在 Gin 中&#xff0c;路由器是框架的核心组件之一&#xff0c;负责处理 HTTP 请求并将其映射到相应的处理函数上。 以下是 Gin 路由器的一些关键特性和工作原理的简要解释…...

Java面经知识点汇总版

Java面经知识点汇总版 算法 14. 最长公共前缀&#xff08;写出来即可&#xff09; Java 计算机基础 数据库 基础 SQL SELECT first_name, last_name, salary FROM employees WHERE department Sales AND salary > (SELECT AVG(salary)FROM employeesWHERE department Sal…...

详细分析Sql Server中的declare基本知识

目录 前言1. 基本知识2. Demo3. 拓展Mysql4. 彩蛋 前言 实战探讨主要来源于触发器的Demo 1. 基本知识 DECLARE 语句用于声明变量 声明的变量可以用于存储临时数据&#xff0c;并在 SQL 查询中多次引用 声明变量&#xff1a;使用 DECLARE 语句声明一个或多个变量变量命名&a…...

Perl 语言入门:编写并执行你的第一个脚本

摘要 Perl 是一种高级、通用的、解释型、动态编程语言&#xff0c;以其强大的文本处理能力而闻名。本文将指导初学者如何编写和执行他们的第一个 Perl 脚本&#xff0c;包括 Perl 的基本概念、脚本的基本结构、运行 Perl 脚本的方法以及一些简单的 Perl 语法。 引言 Perl&am…...

python库 - missingno

missingno 是一个用于可视化和分析数据集中缺失值的 Python 库。它提供了一系列简单而强大的工具&#xff0c;帮助用户直观地理解数据中的缺失模式&#xff0c;从而更好地进行数据清洗和预处理。missingno 库特别适用于数据分析和数据科学项目&#xff0c;尤其是在处理缺失数据…...

VPN的限制使得WinSCP无法直接连接到FTP服务器解决办法

由于VPN的限制使得WinSCP无法直接连接到FTP服务器&#xff0c;并且堡垒机的文件上传限制为500M&#xff0c;因此我们需要找到一种绕过这些限制的方法。以下是几个可行的方案&#xff1a; 方法1&#xff1a;通过分割文件上传 分割文件&#xff1a; 使用文件分割工具&#xff08…...

PCI DSS是什么?

PCI DSS&#xff0c;全称为Payment Card Industry Data Security Standard&#xff08;支付卡行业数据安全标准&#xff09;&#xff0c;是由支付卡行业安全标准委员会&#xff08;PCI Security Standards Council&#xff09;制定的一套安全标准&#xff0c;旨在保护信用卡信息…...

DeepMind的JEST技术:AI训练速度提升13倍,能效增强10倍,引领绿色AI革命

谷歌旗下的人工智能研究实验室DeepMind发布了一项关于人工智能模型训练的新研究成果&#xff0c;声称其新提出的“联合示例选择”&#xff08;Joint Example Selection&#xff0c;简称JEST&#xff09;技术能够极大地提高训练速度和能源效率&#xff0c;相比其他方法&#xff…...

如何使用 pytorch 创建一个神经网络

我已发布在&#xff1a;如何使用 pytorch 创建一个神经网络 SapientialM.Github.io 构建神经网络 1 导入所需包 import os import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms2 检查GPU是否可用 dev…...

Java版Flink使用指南——定制RabbitMQ数据源的序列化器

大纲 新建工程新增依赖数据对象序列化器接入数据源 测试修改Slot个数打包、提交、运行 工程代码 在《Java版Flink使用指南——从RabbitMQ中队列中接入消息流》一文中&#xff0c;我们从RabbitMQ队列中读取了字符串型数据。如果我们希望读取的数据被自动化转换为一个对象&#x…...

CV每日论文--2024.7.8

1、DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents 中文标题&#xff1a;DisCo-Diff&#xff1a;利用离散潜伏增强连续扩散模型 简介&#xff1a;这篇文章提出了一种新型的离散-连续潜变量扩散模型(DisCo-Diff),旨在改善传统扩散模型(DMs)存在的问…...

【AI大模型】赋能儿童安全:楼层与室内定位实践与未来发展

文章目录 引言第一章&#xff1a;AI与室内定位技术1.1 AI技术概述1.2 室内定位技术概述1.3 楼层定位的挑战与解决方案 第二章&#xff1a;儿童定位与安全监控的需求2.1 儿童安全问题的现状2.2 智能穿戴设备的兴起 第三章&#xff1a;技术实现细节3.1 硬件设计与选择传感器选择与…...

云服务器linux系统安装配置docker

在我们拿到一个纯净的linux系统时&#xff0c;我需要进行一些基础环境的配置 &#xff08;如果是云服务器可以用XShell远程连接&#xff0c;如果连接不上可能是服务器没开放22端口&#xff09; 下面是配置环境的步骤 sudo -s进入root权限&#xff1a;退出使用exit sudo -i进入…...

泰勒雷达图2

matplotlib绘制泰勒雷达图 import matplotlib.pyplot as plt import numpy as np from numpy.core.fromnumeric import shape import pandas as pd import dask.dataframe as dd from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes a…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...