边缘概率密度、条件概率密度、边缘分布函数、联合分布函数关系
目录
- 二维随机变量及其分布
- 离散型随机变量
- 连续型随机变量
- 边缘分布
- 边缘概率密度
- 举例
- 边缘概率密度
- 条件概率密度
- 边缘概率密度与条件概率密度的区别
- 边缘概率密度
- 条件概率密度
- 举个具体例子
- 参考资料
二维随机变量及其分布
离散型随机变量

把所有的概率,都理解成不同质量的物体,这些物体就分布在二维平面上(左图)。再把这些物体都看成是精简的质点。
如果 f ( x , y ) f(x,y) f(x,y)是其中的某个点的话,那么 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x, Y≤y) F(x,y)=P(X≤x,Y≤y)就是该点左下角所有质点的质量叠加。

连续型随机变量
它就不再是一个个质点了,而是一个个物体。 F ( x , y ) F(x,y) F(x,y)叫联合分布函数。其分布函数仍然是质量。概率密度就是面密度(例如kg/m^2).

如果你要给爱人送一个礼物,中间部分是黄金做的,边缘部分是铁做的。从金到铁有一个渐变的过程,这就导致每个点的密度不太一样。(此处,这个物体是个薄片、扁平的,不研究它的厚度)。这个密度就叫概率密度 f ( x , y ) f(x,y) f(x,y)

F ( x , y ) F(x,y) F(x,y)还是表示点 ( x , y ) (x,y) (x,y)左下角的质量。也就是对面密度做积分,得到的就是质量。

把质量对应概率,把密度对应成面密度。
边缘分布

F X ( x ) = P ( X ≤ x ) F_X(x)=P(X≤x) FX(x)=P(X≤x)与 F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x, Y≤y) F(x,y)=P(X≤x,Y≤y)的关系,如下图所示。

边缘概率密度

觉得礼品不太好看,沿着y方向压缩,一直压缩到从数学上来说y的厚度已经没有了(0),如下图所示

此时,这根线的密度,就叫线密度(g/cm)。

压缩过程如下。其代表的是x位于不同点的时候的密度。


所以,右侧图中线上每个点的质量(概率),其实就是左侧图片中对应的竖线的质量,竖直做积分。
同理 F Y ( y ) F_Y(y) FY(y)就是水平做积分。
举例
下图中,黄颜色代表大多数人都位于这个位置,集中在身高和体重的均值附近,概率密度比较大。

F(1.6, 100),计算的是身高≤1.6m,体重≤100kg的概率。从质量的角度来说,算的是质量。

而边缘概率,是身高小于1.6的人的概率,也可以理解为x<1.6的质量。

边缘概率密度
把同身高、不同体重的人进行积分,就得到单独身高的密度分布,

条件概率密度
它和边缘概率密度有点像,但又不一样。它研究的是单独某一条线(水平或竖直)的密度问题。常用于求条件概率密度。



如下图,让Y=b,此时就叫条件概率密度。只研究一条线的概率密度,


以身高体重为例子,研究体重为101斤的人,它的身高的分布,


同样,身高1m85的人,其体重的分布


边缘概率密度与条件概率密度的区别
让我用更简单的方式来解释这两个概念。
边缘概率密度
想象一下,你和朋友在玩一种抽奖游戏。这个抽奖游戏有两个转盘,一个转盘上有各种颜色(红色、绿色、蓝色),另一个转盘上有各种动物(狗、猫、鸟)。每次抽奖,你会同时转动这两个转盘,然后得到一个颜色和一个动物的组合。
现在,我们只对颜色感兴趣,不管动物是什么。这就像我们只看第一个转盘,不看第二个转盘。这时候,我们就得到了颜色的边缘概率密度。就是说,我们只关心颜色的分布情况,比如有多少次是红色的,有多少次是绿色的等等。
条件概率密度
继续这个抽奖游戏的例子。如果这次我们知道抽到的动物是狗,我们想知道在这种情况下颜色的分布情况。比如,在抽到狗的时候,有多少次是红色的,有多少次是绿色的等等。这就是条件概率密度。
条件概率密度告诉我们:在已知某个条件下(比如已经知道抽到的是狗),其他东西(比如颜色)的分布情况。
举个具体例子
假设我们玩了很多次这个游戏,统计结果如下:
- 总共抽了100次。
- 抽到红色的有30次,绿色的有50次,蓝色的有20次(这就是颜色的边缘概率)。
- 抽到狗的有40次,猫的有30次,鸟的有30次。
- 在抽到狗的40次里,红色的有10次,绿色的有20次,蓝色的有10次(这就是抽到狗时颜色的条件概率)。
所以,边缘概率密度就像我们只看颜色的总体情况,而条件概率密度就像我们知道抽到狗后再来看颜色的分布情况。
参考资料
[1] 边缘概率密度,条件概率密度,边缘分布函数,联合分布函数关系;
相关文章:
边缘概率密度、条件概率密度、边缘分布函数、联合分布函数关系
目录 二维随机变量及其分布离散型随机变量连续型随机变量边缘分布边缘概率密度举例边缘概率密度 条件概率密度边缘概率密度与条件概率密度的区别边缘概率密度条件概率密度举个具体例子 参考资料 二维随机变量及其分布 离散型随机变量 把所有的概率,都理解成不同质量…...
软件架构之系统分析与设计方法(2)
软件架构之系统分析与设计方法(2) 8.4 面向对象的分析与设计8.4.1 面向对象的基本概念8.4.2 面向对象分析8.4.3 统一建模语言 8.5 用户界面设计8.5.1 用户界面设计的原则8.5.2 用户界面设计过程 8.6 工作流设计8.6.1 工作流设计概述8.6.2 工作流管理系统 8.7 简单分…...
AD确定板子形状
方法1 修改栅格步进值,手动绘制 https://cnblogs.com/fqhy/p/13768031.html 方法2 器件摆放确定板子形状 https://blog.csdn.net/Mark_md/article/details/116445961...
CSS【详解】边框 border,边框-圆角 border-radius,边框-填充 border-image,轮廓 outline
边框 border border 是以下三种边框样式的简写: border-width 边框宽度 —— 数值 px(像素),thin(细),medium(中等),thick(粗)border-style 边框线型 —— none【默认值…...
Error: EBUSY: resource busy or locked, rmdir...npm install执行报错
Error: EBUSY: resource busy or locked, rmdir...npm install执行报错 你一个文件夹目录开了两个cmd命令行(或者powershell),关掉一个就好了。...
Hot100-排序
1.快排 215. 数组中的第K个最大元素 - 力扣(LeetCode) (1)第k大的元素在排序数组中的位置是nums.length - k。 假设我们有一个数组nums [3, 2, 1, 5, 6, 4],并且我们想找到第2大的元素。 步骤 1:排序数…...
树链剖分相关
树链剖分这玩意儿还挺重要的,是解决静态树问题的一个很好的工具~ 这里主要介绍一下做题时经常遇到的两个操作: 1.在线求LCA int LCA(int x,int y){while(top[x]!top[y])if(dep[top[x]]>dep[top[y]]) xfa[top[x]];else yfa[top[y]];return dep[x]&l…...
如何将Grammarly内嵌到word中(超简单!)
1、下载 安装包下载链接见文章结尾 官网的grammarly好像只能作为单独软件使用,无法内嵌到word中🧐🧐🧐 2、双击安装包(安装之前把Office文件都关掉) 3、安装完成,在桌面新建个word文件并打开 注…...
OTG -- 用于FPGA的ULPI接口芯片USB3320讲解(续)
目录 1 背景 2 USB3320在FPGA上的应用 1 背景 最近使用FPGA驱动USB PHY实现高速USB功能,为了方便,购买了一块微雪的USB3300子板,发现怎么都枚举不了,使用逻辑分析仪抓取波形,和STM32F407USB3300波形进行对比…...
了解劳动准备差距:人力资源专业人员的战略
劳动准备差距是一个紧迫的问题,在全球人事部门回应,谈论未开发的潜力和错过的机会。想象一下,人才和需求之间的悬崖之间有一座桥,这促使雇主思考:我们是否为员工提供了足够的设备来应对未来的考验? 这种不…...
SAP PS学习笔记02 - 网络,活动,PS文本,PS文书(凭证),里程碑
上一章讲了PS 的概要,以及创建Project,创建WBS。 SAP PS学习笔记01 - PS概述,创建Project和WBS-CSDN博客 本章继续讲PS的后续内容。包括下面的概念和基本操作,以及一些Customize: - 网络(Network…...
Github 2024-07-07php开源项目日报 Top9
根据Github Trendings的统计,今日(2024-07-07统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量PHP项目9Blade项目2JavaScript项目1Laravel:表达力和优雅的 Web 应用程序框架 创建周期:4631 天开发语言:PHP, BladeStar数量:75969 个Fork数…...
算法训练(leetcode)第二十六天 | 452. 用最少数量的箭引爆气球、435. 无重叠区间、763. 划分字母区间
刷题记录 452. 用最少数量的箭引爆气球思路一思路二 435. 无重叠区间763. 划分字母区间 452. 用最少数量的箭引爆气球 leetcode题目地址 思路一 先按起始坐标从小到大排序。排序后找交集并将交集存入一个数组中,遍历气球数组从交集数组中找交集,找到与…...
Ubuntu 下 Docker安装 2024
Ubuntu 下 Docker安装 2024 安装1.卸载老版本2.更新apt包索引3.安装必要工具包4.添加Docker GPG秘钥5.配置仓库源6.安装Docker Engine7.启动docker 国内镜像源下架的解决办法1.修改文件 /etc/docker/daemon.json2.换源3.查看是否换源成功4.重启 安装 1.卸载老版本 sudo apt-ge…...
发送者的可靠性
这篇文章是了解MQ消息的可靠性,即:消息应该至少被消费者处理1次 那么问题来了: 我们该如何确保MQ消息的可靠性?如果真的发送失败,有没有其它的兜底方案? 首先,我们一起分析一下消息丢失的可能…...
Profibus_DP转ModbusTCP网关模块连马保与上位机通讯
Profibus转ModbusTCP网关模块(XD-ETHPB20)广泛应用于工业自动化领域。例如,可以将Profibus网络中的传感器数据转换为ModbusTCP协议,实现数据的实时监控和远程控制。本文介绍了如何利用Profibus转ModbusTCP网关(XD-ETHP…...
移动应用:商城购物类,是最常见的,想出彩或许就差灵犀一指
在移动应用中,商城购物类的非常常见,模式也非常成熟,想要设计的出彩也是有难度的,这次分享一些不同的。...
linux 查看历史命令列表来访问之前的内容的命令是:history
在Linux中,要查看历史命令列表以访问之前的内容,你可以使用history命令。这个命令会显示你当前shell会话(或者,如果你指定了参数,可能是所有会话)中执行过的命令列表。 基本用法 简单地输入history并按下…...
NAS免费用,鲁大师 AiNAS正式发布,「专业版」年卡仅需264元
7月10日,鲁大师召开新品发布会,正式发布旗下以“提供本地Ai部署和使用能力以及在线NAS功能”并行的复合软件产品:鲁大师 AiNAS。 全新的鲁大师 AiNAS将持续满足现如今大众对于数字化生活的全新需求,将“云存储”的便捷与NAS的大容…...
spring监听事件
1、spring-监听事件基本原理 Spring的事件监听机制和发布订阅机制是很相似的:发布了一个事件后,监听该类型事件的所有监听器会触发相应的处理逻辑 2、Spring 监听事件相关规范 在Spring中,事件监听机制主要涉及到了一下几个关键的规范&#x…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
