浅析Kafka Streams中KTable.aggregate()方法的使用
KTable.aggregate() 方法是 Apache Kafka Streams API 中用于对流数据进行状态化聚合的核心方法之一。这个方法允许你根据一个键值(通常是<K,V>类型)的流数据,应用一个初始值和一个聚合函数,来累积和更新一个状态(通常是<K,AGG>类型)。下面是详细的解释和使用方法:
方法签名
KTable<K, V> 类型的 aggregate() 方法通常具有以下几种重载形式:
-
无状态聚合:
KTable<K, AGG> aggregate(Initializer<AGG> initializer,Aggregator<K, V, AGG> aggregator ); -
带状态聚合:
KTable<K, AGG> aggregate(Initializer<AGG> initializer,Aggregator<K, V, AGG> aggregator,Materialized<K, AGG, ? extends Store> materialized ); -
窗口化聚合:
KTable<Windowed<K>, AGG> aggregate(Initializer<AGG> initializer,Aggregator<K, V, AGG> aggregator,TimeWindowedKTable<Windowed<K>, V> windowed,Materialized<K, AGG, ? extends WindowStore> materialized );
参数说明
-
Initializer initializer: 一个函数,用于返回每个键的初始聚合值。这通常是一个简单的工厂方法,创建一个默认的聚合值。
-
Aggregator<K, V, AGG> aggregator: 一个函数,用于定义如何将新的流元素与当前状态聚合值进行合并。此函数接收三个参数:键(
K)、新值(V)和当前聚合值(AGG),并返回一个新的聚合值。 -
Materialized<K, AGG, ? extends Store> materialized: 可选参数,用于配置状态存储的细节,比如存储类型(如
KeyValueStore或WindowStore)、序列化器、持久化设置等。
使用示例
假设我们有一个 KTable,包含用户ID和他们购买的产品数量,我们想要计算每个用户累计的购买数量:
1. 定义 Initializer 和 Aggregator
public class PurchaseCountInitializer implements Initializer<Long> {@Overridepublic Long apply() {return 0L; // 初始购买数量为0}
}public class PurchaseAggregator implements Aggregator<String, Integer, Long> {@Overridepublic Long apply(String key, Integer value, Long aggregate) {return aggregate + value; // 累加每次购买的数量}
}
2. 调用 .aggregate()
KTable<String, Integer> purchases = ...; // 假设这里是从某个主题读取的购买记录KTable<String, Long> purchaseCounts = purchases.aggregate(new PurchaseCountInitializer(),new PurchaseAggregator(),Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("purchase-count-store").withKeySerde(Serdes.String()).withValueSerde(Serdes.Long())
);
在这个示例中,我们使用了 Materialized 参数来指定状态存储的名称,并配置了键和值的序列化器。
3. 处理窗口化数据
如果我们要处理窗口化的数据,例如计算每个用户过去5分钟内的购买数量,则需要使用窗口化版本的 aggregate() 方法:
TimeWindowedKTable<String, Integer> purchasesWindowed = purchases.windowedBy(TimeWindows.of(Duration.ofMinutes(5)));KTable<Windowed<String>, Long> purchaseCountsWindowed = purchasesWindowed.aggregate(new PurchaseCountInitializer(),new PurchaseAggregator(),Materialized.<String, Long, WindowStore<Bytes, byte[]>>as("purchase-count-window-store").withKeySerde(Serdes.WindowedSerde(Serdes.String())).withValueSerde(Serdes.Long())
);
在这个例子中,TimeWindows.of(Duration.ofMinutes(5)) 创建了一个持续时间为5分钟的滚动窗口。
总结
KTable.aggregate() 方法是 Kafka Streams 中进行状态化聚合的关键,它允许你定义如何初始化和更新聚合状态,以及如何存储和管理这些状态。通过合理配置,你可以实现复杂的数据流处理需求,如累积计数、滑动窗口计算等。
相关文章:
浅析Kafka Streams中KTable.aggregate()方法的使用
KTable.aggregate() 方法是 Apache Kafka Streams API 中用于对流数据进行状态化聚合的核心方法之一。这个方法允许你根据一个键值(通常是<K,V>类型)的流数据,应用一个初始值和一个聚合函数,来累积和更新一个状态࿰…...
java word转pdf、word中关键字位置插入图片 工具类
java word转pdf、word中关键字位置插入图片 工具类 1.pom依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>3.15</version></dependency><dependency><groupId>org.apa…...
jail内部ubuntu apt升级失败问题解决
在FreeBSD jail 里安装启动Ubuntu jammy系统,每次装好执行jexec ubjammy sh进入Ubuntu系统后,执行apt update报错。 这个问题困惑了好久,突然有一天仔细去看报错信息,查看了(man 5 apt.conf) ,才搞定问题。简单来说就是…...
迎接AI新时代:GPT-5的技术飞跃与未来展望
引言 随着人工智能技术的迅猛发展,大语言模型在过去几年取得了显著进步。OpenAI最新的声明表明,GPT-5将在一年半后发布,并将带来从高中生智力水平到博士生智力水平的飞跃。这一突破引起了科技界和公众的广泛关注。本文将从技术突破预测、智能…...
Snap Video:用于文本到视频合成的扩展时空变换器
图像生成模型的质量和多功能性的显著提升,研究界开始将其应用于视频生成领域。但是视频内容高度冗余,直接将图像模型技术应用于视频生成可能会降低运动的保真度和视觉质量,并影响可扩展性。来自 Snap 的研究团队及其合作者提出了 "Snap …...
实验8 视图创建与管理实验
一、实验目的 理解视图的概念。掌握创建、更改、删除视图的方法。掌握使用视图来访问数据的方法。 二、实验内容 在job数据库中,有聘任人员信息表:Work_lnfo表,其表结构如下表所示: 其中表中练习数据如下: 1.‘张明…...
C++ 开源库
1 PDFium PDFium 是一个开源的 PDF 渲染和处理库,最初由 Foxit Software 开发,并于2014年捐赠给了 Chromium 项目。PDFium 旨在为各种应用程序提供高效、灵活的 PDF 渲染和操作功能。 2 代码地址 https://github.com/chromium/pdfium 主要特性 渲染…...
LabVIEW滤波器性能研究
为了研究滤波器的滤波性能,采用LabVIEW设计了一套滤波器性能研究系统。该系统通过LabVIEW中的波形生成函数,输出幅值及频率可调的正弦波和白噪声两种信号,并将白噪声与正弦波叠加,再通过滤波器输出纯净的正弦波信号。系统通过FFT&…...
『C++成长记』vector模拟实现
🔥博客主页:小王又困了 📚系列专栏:C 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、存储结构 二、默认成员函数 📒2.1构造函数 📒2.2拷贝…...
【Mac】Charles for Mac(HTTP协议抓包工具)及同类型软件介绍
软件介绍 Charles for Mac 是一款功能强大的网络调试工具,主要用于HTTP代理/HTTP监视器。以下是它的一些主要特点和功能: 1.HTTP代理:Charles 可以作为HTTP代理服务器,允许你查看客户端和服务器之间的所有HTTP和SSL/TLS通信。 …...
LVS集群及其它的NAT模式
1.lvs集群作用:是linux的内核层面实现负载均衡的软件;将多个后端服务器组成一个高可用、高性能的服务器的集群,通过负载均衡的算法将客户端的请求分发到后端的服务器上,通过这种方式实现高可用和负载均衡。 2.集群和分布式&#…...
【RNN练习】天气预测
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、环境及数据准备 1. 我的环境 语言环境:Python3.11.9编译器:Jupyter notebook深度学习框架:TensorFlow 2.15.0 2. 导…...
prompt第四讲-fewshot
文章目录 前提回顾FewShotPromptTemplateforamt格式化 前提回顾 前面已经实现了一个翻译助手了[prompt第三讲-PromptTemplate],prompt模板设计中,有说明、案例、和实际的问题 # -*- coding: utf-8 -*- """ Time : 2024/7/8 …...
StarRocks分布式元数据源码解析
1. 支持元数据表 https://github.com/StarRocks/starrocks/pull/44276/files 核心类:LogicalIcebergMetadataTable,Iceberg元数据表,将元数据的各个字段做成表的列,后期可以通过sql操作从元数据获取字段,这个表的组成…...
阅读笔记——《Fuzz4All: Universal Fuzzing with Large Language Models》
【参考文献】Xia C S, Paltenghi M, Le Tian J, et al. Fuzz4all: Universal fuzzing with large language models[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 2024: 1-13.【注】本文仅为作者个人学习笔记,如有冒犯&…...
【C++】使用gtest做单元测试框架写单元测试
本文主要介绍在将gtest框架引入到项目里过程中遇到的问题。 我的需求如下: 用CMake构建项目。我要写一些测试程序验证某些功能,但是不想每一个测试都新建一个main函数。 因为新建一个main函数就要在CMakeList.txt里增加一个project,非常不方便。 于是我搜了下,C++里有没…...
Java类与对象
类是对现实世界中实体的抽象,是对一类事物的描述。 类的属性位置在类的内部、方法的外部。 类的属性描述一个类的一些可描述的特性,比如人的姓名、年龄、性别等。 [public] [abstract|final] class 类名 [extends父类] [implements接口列表] { 属性声…...
xlwings 链接到 指定sheet 从别的 excel 复制 sheet 到指定 sheet
重点 可以参考 宏录制 cell sheet.range(G4)cell.api.Hyperlinks.Add(Anchorcell.api, Address"", SubAddress"001-000-02301!A1")def deal_excel(self):with xw.App(visibleTrue) as app:wb app.books.open(self.summary_path, update_linksFalse)sheet…...
风光摄影:相机设置和镜头选择
写在前面 博文内容为《斯科特凯尔比的风光摄影手册》读书笔记整理涉及在风景拍摄中一些相机设置,镜头选择的建议对小白来讲很实用,避免拍摄一些过曝或者过暗的风景照片理解不足小伙伴帮忙指正 😃,生活加油 99%的焦虑都来自于虚度时间和没有好…...
python制作甘特图的基本知识(附Demo)
目录 前言1. matplotlib2. plotly 前言 甘特图是一种常见的项目管理工具,用于表示项目任务的时间进度 直观地看到项目的各个任务在时间上的分布和进度 常用的绘制甘特图的工具是 matplotlib 和 plotly 主要以Demo的形式展示 1. matplotlib 功能强大的绘图库&a…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
