RuntimeError: Unexpected error from cudaGetDeviceCount
RuntimeError: Unexpected error from cudaGetDeviceCount
- 0. 引言
- 1. 临时解决方法
0. 引言
使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下:
(VllmWorkerProcess pid=30692) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30694) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30693) Traceback (most recent call last):
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30693) self.run()
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30693) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30693) worker = worker_factory()
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30693) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30693) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30693) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30693) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30693) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30693) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30693) prop = get_device_properties(device)
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30693) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30693) torch._C._cuda_init()
(VllmWorkerProcess pid=30693) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30692) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30692) Traceback (most recent call last):
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30692) self.run()
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30692) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30692) worker = worker_factory()
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30692) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30692) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30692) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30692) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30692) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30692) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30692) prop = get_device_properties(device)
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30692) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30692) torch._C._cuda_init()
(VllmWorkerProcess pid=30692) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30694) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30694) Traceback (most recent call last):
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30694) self.run()
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30694) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30694) worker = worker_factory()
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30694) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30694) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30694) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30694) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30694) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30694) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30694) prop = get_device_properties(device)
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30694) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30694) torch._C._cuda_init()
(VllmWorkerProcess pid=30694) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
ERROR 07-12 08:16:26 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 30693 died, exit code: 1
INFO 07-12 08:16:26 multiproc_worker_utils.py:123] Killing local vLLM worker processes
1. 临时解决方法
vi /root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py--- 设置成固定的 `backend = _Backend.XFORMERS`。# backend = which_attn_to_use(num_heads, head_size, num_kv_heads,# sliding_window, dtype, kv_cache_dtype,# block_size)backend = _Backend.XFORMERS
---
完结!
相关文章:
RuntimeError: Unexpected error from cudaGetDeviceCount
RuntimeError: Unexpected error from cudaGetDeviceCount 0. 引言1. 临时解决方法 0. 引言 使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下: (VllmWorkerProcess pid30692) WARNING 07-12 08:16:22 utils.py:562] U…...
uboot学习:(一)基础认知
目录 uboot是一个裸机程序(bootloader) 作用 要运行linux系统时,如何从外置的flash拷贝到DDR中,才能启动 uboot使用步骤 步骤1中的命令例子 注意 uboot源码获取方法 uboot是一个裸机程序(bootloader)…...
每天一个数据分析题(四百二十六)- 总体方差
为了比较两个总体方差,我们通常检验两个总体的() A. 方差差 B. 方差比 C. 方差乘积 D. 方差和 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python,SQL,统计学&a…...
【C++】设计一套基于C++与C#的视频播放软件
在开发一款集视频播放与丰富交互功能于一体的软件时,结合C的高性能与C#在界面开发上的便捷性,是一个高效且实用的选择。以下,我们将概述这样一个系统的架构设计、关键技术点以及各功能模块的详细实现思路。 一、系统架构设计 1. 架构概览 …...
数学建模中的辅助变量、中间变量、指示变量
在数学建模中,除了决策变量外,还有一些其他类型的变量,如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释: 1. 决策变量(Decision Variables) 定义&am…...
python的seek()和tell()
seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值,表示相对于起始位置的偏移量。如果是正数,表示向文件末尾方向移动;如果是负…...
Go泛型详解
引子 如果我们要写一个函数分别比较2个整数和浮点数的大小,我们就要写2个函数。如下: func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数,除了数据类…...
【每日一练】python之sum()求和函数实例讲解
在Python中, sum()是一个内置函数,用于计算可迭代对象(如列表、元组等)中所有元素的总和。如下实例: """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数,统计作用 "&…...
打造智慧校园德育管理,提升学生操行基础分
智慧校园的德育管理系统内嵌的操行基础分功能,是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标,如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等,为每个学…...
自定义函数---随机数系列函数
大家有没有发现平常在写随机数的时候,需要引入很多的头文件,然后还需要用一些复杂的函数,大家可能不太习惯,于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令,防止头文件被重复包含…...
一文了解5G新通话技术演进与业务模型
5G新通话简介 5G新通话,也被称为VoNR,是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道(Data Channel),承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...
el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法
在change事件中如果对el-input-number绑定的数据进行更改,会出现change事件失效的问题 试过:this.$set()及赋值等方法,都无法解决 解决方法:用$nextTick函数对绑定值进行更改( this.$nextTick(() > { this.绑定…...
将vue项目整合到springboot项目中并在阿里云上运行
第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...
AC修炼计划(AtCoder Regular Contest 179)A~C
A - Partition A题传送门 这道题不难发现,如果数字最终的和大于等于K,我们可以把这个原数列从大到小排序,得到最终答案。 如果和小于K,则从小到大排序,同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...
开发编码规范笔记
前言 (1)该博客仅用于个人笔记 格式转换 (1)查看是 LF 行尾还是CRLF 行尾。 # 单个文件,\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件,$ 表示 LF 行尾。^M$ 表示 CRLF …...
spring boot easyexcel
1.pom <!-- easyexcel 依赖 --><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency><dependency><groupId>org.projectlombok</group…...
Docker 部署 ShardingSphere-Proxy 数据库中间件
文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldatabase-readwrite-splitting.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为…...
Qt常用快捷键
Qt中的常用快捷键 F1查看帮助F2快速到变量声明 从cpp→hShift F2 函数的声明和定义之间快速切换 ;选中函数名 ,从h→cppF4在 cpp 和 h 文件切换 Shift F4在cpp/h文件与 界面文件中切换Ctrl /注释当前行 或者选中的区域Ctrl I自动缩进当前…...
关于RiboSeq分析流程的总结
最近关注了一下RiboSeq的分析方法,方法挺多的,但是无论哪种软件,都会存在或多或少的问题,一点问题不存在的软件不存在,问题的原因出在,1.有的脚本是用python2编写的,目前python2已经不能用了 2.…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
背包问题双雄:01 背包与完全背包详解(Java 实现)
一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...
linux设备重启后时间与网络时间不同步怎么解决?
linux设备重启后时间与网络时间不同步怎么解决? 设备只要一重启,时间又错了/偏了,明明刚刚对时还是对的! 这在物联网、嵌入式开发环境特别常见,尤其是开发板、树莓派、rk3588 这类设备。 解决方法: 加硬件…...
