当前位置: 首页 > news >正文

RuntimeError: Unexpected error from cudaGetDeviceCount

RuntimeError: Unexpected error from cudaGetDeviceCount

  • 0. 引言
  • 1. 临时解决方法

0. 引言

使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下:

(VllmWorkerProcess pid=30692) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30694) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30693) Traceback (most recent call last):
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30693)     self.run()
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30693)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30693)     worker = worker_factory()
(VllmWorkerProcess pid=30693)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30693)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30693)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30693)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30693)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30693)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30693)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30693)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30693)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30693)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30693)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30693)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30693)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30693)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30693)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30693)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30693)     torch._C._cuda_init()
(VllmWorkerProcess pid=30693) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30692) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30692) Traceback (most recent call last):
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30692)     self.run()
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30692)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30692)     worker = worker_factory()
(VllmWorkerProcess pid=30692)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30692)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30692)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30692)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30692)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30692)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30692)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30692)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30692)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30692)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30692)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30692)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30692)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30692)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30692)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30692)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30692)     torch._C._cuda_init()
(VllmWorkerProcess pid=30692) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30694) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30694) Traceback (most recent call last):
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30694)     self.run()
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30694)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30694)     worker = worker_factory()
(VllmWorkerProcess pid=30694)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30694)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30694)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30694)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30694)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30694)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30694)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30694)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30694)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30694)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30694)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30694)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30694)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30694)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30694)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30694)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30694)     torch._C._cuda_init()
(VllmWorkerProcess pid=30694) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
ERROR 07-12 08:16:26 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 30693 died, exit code: 1
INFO 07-12 08:16:26 multiproc_worker_utils.py:123] Killing local vLLM worker processes

1. 临时解决方法

vi /root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py--- 设置成固定的 `backend = _Backend.XFORMERS`。# backend = which_attn_to_use(num_heads, head_size, num_kv_heads,#                           sliding_window, dtype, kv_cache_dtype,#                            block_size)backend = _Backend.XFORMERS
---

完结!

相关文章:

RuntimeError: Unexpected error from cudaGetDeviceCount

RuntimeError: Unexpected error from cudaGetDeviceCount 0. 引言1. 临时解决方法 0. 引言 使用 vllm-0.4.2 部署时&#xff0c;多卡正常运行。升级到 vllm-0.5.1 时&#xff0c;报错如下&#xff1a; (VllmWorkerProcess pid30692) WARNING 07-12 08:16:22 utils.py:562] U…...

uboot学习:(一)基础认知

目录 uboot是一个裸机程序&#xff08;bootloader&#xff09; 作用 要运行linux系统时&#xff0c;如何从外置的flash拷贝到DDR中&#xff0c;才能启动 uboot使用步骤 步骤1中的命令例子 注意 uboot源码获取方法 uboot是一个裸机程序&#xff08;bootloader&#xff09…...

每天一个数据分析题(四百二十六)- 总体方差

为了比较两个总体方差&#xff0c;我们通常检验两个总体的() A. 方差差 B. 方差比 C. 方差乘积 D. 方差和 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python&#xff0c;SQL&#xff0c;统计学&a…...

【C++】设计一套基于C++与C#的视频播放软件

在开发一款集视频播放与丰富交互功能于一体的软件时&#xff0c;结合C的高性能与C#在界面开发上的便捷性&#xff0c;是一个高效且实用的选择。以下&#xff0c;我们将概述这样一个系统的架构设计、关键技术点以及各功能模块的详细实现思路。 一、系统架构设计 1. 架构概览 …...

数学建模中的辅助变量、中间变量、指示变量

在数学建模中&#xff0c;除了决策变量外&#xff0c;还有一些其他类型的变量&#xff0c;如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释&#xff1a; 1. 决策变量&#xff08;Decision Variables&#xff09; 定义&am…...

python的seek()和tell()

seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值&#xff0c;表示相对于起始位置的偏移量。如果是正数&#xff0c;表示向文件末尾方向移动&#xff1b;如果是负…...

Go泛型详解

引子 如果我们要写一个函数分别比较2个整数和浮点数的大小&#xff0c;我们就要写2个函数。如下&#xff1a; func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数&#xff0c;除了数据类…...

【每日一练】python之sum()求和函数实例讲解

在Python中&#xff0c; sum()是一个内置函数&#xff0c;用于计算可迭代对象&#xff08;如列表、元组等&#xff09;中所有元素的总和。如下实例&#xff1a; """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数&#xff0c;统计作用 "&…...

打造智慧校园德育管理,提升学生操行基础分

智慧校园的德育管理系统内嵌的操行基础分功能&#xff0c;是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标&#xff0c;如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等&#xff0c;为每个学…...

自定义函数---随机数系列函数

大家有没有发现平常在写随机数的时候&#xff0c;需要引入很多的头文件&#xff0c;然后还需要用一些复杂的函数&#xff0c;大家可能不太习惯&#xff0c;于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令&#xff0c;防止头文件被重复包含…...

一文了解5G新通话技术演进与业务模型

5G新通话简介 5G新通话&#xff0c;也被称为VoNR&#xff0c;是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道&#xff08;Data Channel&#xff09;&#xff0c;承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...

el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法

在change事件中如果对el-input-number绑定的数据进行更改&#xff0c;会出现change事件失效的问题 试过&#xff1a;this.$set()及赋值等方法&#xff0c;都无法解决 解决方法&#xff1a;用$nextTick函数对绑定值进行更改&#xff08; this.$nextTick(() > { this.绑定…...

将vue项目整合到springboot项目中并在阿里云上运行

第一步&#xff0c;使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...

AC修炼计划(AtCoder Regular Contest 179)A~C

A - Partition A题传送门 这道题不难发现&#xff0c;如果数字最终的和大于等于K&#xff0c;我们可以把这个原数列从大到小排序&#xff0c;得到最终答案。 如果和小于K&#xff0c;则从小到大排序&#xff0c;同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...

开发编码规范笔记

前言 &#xff08;1&#xff09;该博客仅用于个人笔记 格式转换 &#xff08;1&#xff09;查看是 LF 行尾还是CRLF 行尾。 # 单个文件&#xff0c;\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件&#xff0c;$ 表示 LF 行尾。^M$ 表示 CRLF …...

spring boot easyexcel

1.pom <!-- easyexcel 依赖 --><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency><dependency><groupId>org.projectlombok</group…...

Docker 部署 ShardingSphere-Proxy 数据库中间件

文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldatabase-readwrite-splitting.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统&#xff0c; 可以将任意数据库转换为…...

Qt常用快捷键

Qt中的常用快捷键 F1查看帮助F2快速到变量声明 从cpp→hShift F2 函数的声明和定义之间快速切换 &#xff1b;选中函数名 &#xff0c;从h→cppF4在 cpp 和 h 文件切换 Shift F4在cpp/h文件与 界面文件中切换Ctrl /注释当前行 或者选中的区域Ctrl I自动缩进当前…...

关于RiboSeq分析流程的总结

最近关注了一下RiboSeq的分析方法&#xff0c;方法挺多的&#xff0c;但是无论哪种软件&#xff0c;都会存在或多或少的问题&#xff0c;一点问题不存在的软件不存在&#xff0c;问题的原因出在&#xff0c;1.有的脚本是用python2编写的&#xff0c;目前python2已经不能用了 2.…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...