当前位置: 首页 > news >正文

RuntimeError: Unexpected error from cudaGetDeviceCount

RuntimeError: Unexpected error from cudaGetDeviceCount

  • 0. 引言
  • 1. 临时解决方法

0. 引言

使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下:

(VllmWorkerProcess pid=30692) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30694) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30693) Traceback (most recent call last):
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30693)     self.run()
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30693)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30693)     worker = worker_factory()
(VllmWorkerProcess pid=30693)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30693)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30693)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30693)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30693)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30693)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30693)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30693)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30693)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30693)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30693)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30693)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30693)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30693)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30693)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30693)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30693)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30693)     torch._C._cuda_init()
(VllmWorkerProcess pid=30693) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30692) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30692) Traceback (most recent call last):
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30692)     self.run()
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30692)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30692)     worker = worker_factory()
(VllmWorkerProcess pid=30692)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30692)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30692)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30692)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30692)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30692)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30692)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30692)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30692)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30692)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30692)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30692)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30692)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30692)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30692)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30692)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30692)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30692)     torch._C._cuda_init()
(VllmWorkerProcess pid=30692) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30694) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30694) Traceback (most recent call last):
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30694)     self.run()
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30694)     self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30694)     worker = worker_factory()
(VllmWorkerProcess pid=30694)              ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30694)     wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30694)     self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30694)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30694)     self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30694)                                             ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30694)     self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30694)                         ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30694)     backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30694)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30694)     if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30694)        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30694)     prop = get_device_properties(device)
(VllmWorkerProcess pid=30694)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30694)     _lazy_init()  # will define _get_device_properties
(VllmWorkerProcess pid=30694)     ^^^^^^^^^^^^
(VllmWorkerProcess pid=30694)   File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30694)     torch._C._cuda_init()
(VllmWorkerProcess pid=30694) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
ERROR 07-12 08:16:26 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 30693 died, exit code: 1
INFO 07-12 08:16:26 multiproc_worker_utils.py:123] Killing local vLLM worker processes

1. 临时解决方法

vi /root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py--- 设置成固定的 `backend = _Backend.XFORMERS`。# backend = which_attn_to_use(num_heads, head_size, num_kv_heads,#                           sliding_window, dtype, kv_cache_dtype,#                            block_size)backend = _Backend.XFORMERS
---

完结!

相关文章:

RuntimeError: Unexpected error from cudaGetDeviceCount

RuntimeError: Unexpected error from cudaGetDeviceCount 0. 引言1. 临时解决方法 0. 引言 使用 vllm-0.4.2 部署时&#xff0c;多卡正常运行。升级到 vllm-0.5.1 时&#xff0c;报错如下&#xff1a; (VllmWorkerProcess pid30692) WARNING 07-12 08:16:22 utils.py:562] U…...

uboot学习:(一)基础认知

目录 uboot是一个裸机程序&#xff08;bootloader&#xff09; 作用 要运行linux系统时&#xff0c;如何从外置的flash拷贝到DDR中&#xff0c;才能启动 uboot使用步骤 步骤1中的命令例子 注意 uboot源码获取方法 uboot是一个裸机程序&#xff08;bootloader&#xff09…...

每天一个数据分析题(四百二十六)- 总体方差

为了比较两个总体方差&#xff0c;我们通常检验两个总体的() A. 方差差 B. 方差比 C. 方差乘积 D. 方差和 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python&#xff0c;SQL&#xff0c;统计学&a…...

【C++】设计一套基于C++与C#的视频播放软件

在开发一款集视频播放与丰富交互功能于一体的软件时&#xff0c;结合C的高性能与C#在界面开发上的便捷性&#xff0c;是一个高效且实用的选择。以下&#xff0c;我们将概述这样一个系统的架构设计、关键技术点以及各功能模块的详细实现思路。 一、系统架构设计 1. 架构概览 …...

数学建模中的辅助变量、中间变量、指示变量

在数学建模中&#xff0c;除了决策变量外&#xff0c;还有一些其他类型的变量&#xff0c;如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释&#xff1a; 1. 决策变量&#xff08;Decision Variables&#xff09; 定义&am…...

python的seek()和tell()

seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值&#xff0c;表示相对于起始位置的偏移量。如果是正数&#xff0c;表示向文件末尾方向移动&#xff1b;如果是负…...

Go泛型详解

引子 如果我们要写一个函数分别比较2个整数和浮点数的大小&#xff0c;我们就要写2个函数。如下&#xff1a; func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数&#xff0c;除了数据类…...

【每日一练】python之sum()求和函数实例讲解

在Python中&#xff0c; sum()是一个内置函数&#xff0c;用于计算可迭代对象&#xff08;如列表、元组等&#xff09;中所有元素的总和。如下实例&#xff1a; """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数&#xff0c;统计作用 "&…...

打造智慧校园德育管理,提升学生操行基础分

智慧校园的德育管理系统内嵌的操行基础分功能&#xff0c;是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标&#xff0c;如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等&#xff0c;为每个学…...

自定义函数---随机数系列函数

大家有没有发现平常在写随机数的时候&#xff0c;需要引入很多的头文件&#xff0c;然后还需要用一些复杂的函数&#xff0c;大家可能不太习惯&#xff0c;于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令&#xff0c;防止头文件被重复包含…...

一文了解5G新通话技术演进与业务模型

5G新通话简介 5G新通话&#xff0c;也被称为VoNR&#xff0c;是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道&#xff08;Data Channel&#xff09;&#xff0c;承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...

el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法

在change事件中如果对el-input-number绑定的数据进行更改&#xff0c;会出现change事件失效的问题 试过&#xff1a;this.$set()及赋值等方法&#xff0c;都无法解决 解决方法&#xff1a;用$nextTick函数对绑定值进行更改&#xff08; this.$nextTick(() > { this.绑定…...

将vue项目整合到springboot项目中并在阿里云上运行

第一步&#xff0c;使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...

AC修炼计划(AtCoder Regular Contest 179)A~C

A - Partition A题传送门 这道题不难发现&#xff0c;如果数字最终的和大于等于K&#xff0c;我们可以把这个原数列从大到小排序&#xff0c;得到最终答案。 如果和小于K&#xff0c;则从小到大排序&#xff0c;同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...

开发编码规范笔记

前言 &#xff08;1&#xff09;该博客仅用于个人笔记 格式转换 &#xff08;1&#xff09;查看是 LF 行尾还是CRLF 行尾。 # 单个文件&#xff0c;\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件&#xff0c;$ 表示 LF 行尾。^M$ 表示 CRLF …...

spring boot easyexcel

1.pom <!-- easyexcel 依赖 --><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency><dependency><groupId>org.projectlombok</group…...

Docker 部署 ShardingSphere-Proxy 数据库中间件

文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldatabase-readwrite-splitting.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统&#xff0c; 可以将任意数据库转换为…...

Qt常用快捷键

Qt中的常用快捷键 F1查看帮助F2快速到变量声明 从cpp→hShift F2 函数的声明和定义之间快速切换 &#xff1b;选中函数名 &#xff0c;从h→cppF4在 cpp 和 h 文件切换 Shift F4在cpp/h文件与 界面文件中切换Ctrl /注释当前行 或者选中的区域Ctrl I自动缩进当前…...

关于RiboSeq分析流程的总结

最近关注了一下RiboSeq的分析方法&#xff0c;方法挺多的&#xff0c;但是无论哪种软件&#xff0c;都会存在或多或少的问题&#xff0c;一点问题不存在的软件不存在&#xff0c;问题的原因出在&#xff0c;1.有的脚本是用python2编写的&#xff0c;目前python2已经不能用了 2.…...

NLP任务:情感分析、看图说话

我可不向其他博主那样拖泥带水&#xff0c;我有代码就直接贴在文章里&#xff0c;或者放到gitee供你们参考下载&#xff0c;虽然写的不咋滴&#xff0c;废话少说&#xff0c;上代码。 gitee码云地址&#xff1a; 卢东艺/pytorch_cv_nlp - 码云 - 开源中国 (gitee.com)https:/…...

Linux桌面溯源

X窗口系统(X Window System) Linux起源于X窗口系统&#xff08;X Window System&#xff09;&#xff0c;亦即常说的X11&#xff0c;因其版本止于11之故。 X窗口系统&#xff08;X Window System&#xff0c;也常称为X11或X&#xff09;是一种以位图方式显示的软件窗口系统。…...

深入Linux:权限管理与常用命令详解

文章目录 ❤️Linux常用指令&#x1fa77;zip/unzip指令&#x1fa77;tar指令&#x1fa77;bc指令&#x1fa77;uname指令&#x1fa77;shutdown指令 ❤️shell命令以及原理❤️什么是 Shell 命令❤️Linux权限管理的概念❤️Linux权限管理&#x1fa77;文件访问者的分类&#…...

Mojo 编程语言:AI开发者的新宠儿

Mojo&#xff08;Meta Object Oriented programming for Java Objects&#xff09;是一种面向对象的编程语言&#xff0c;旨在简化和加速Java应用程序的开发过程。作为近年来新兴的编程语言&#xff0c;Mojo因其与Java的紧密集成以及AI开发领域的应用潜力而逐渐成为AI开发者的新…...

ARM/Linux嵌入式面经(十):极氪

开篇强调两个事情: pdf文件都在百度网盘群:911289806一定要把超链接里面的文章看了,那都是为了你们写的。老板!!!现在多学点,涨个2k工资,真的很值得。要不吃学习的苦,要不吃生活的苦。 1. 自我介绍 专开新篇,等我! 2. 项目介绍,提问 专开新篇,等我! 3. SPI通信和…...

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程 新增网卡 新增网卡的首先当然需要关闭PVE母机&#xff0c;把新网卡插上&#xff0c;我用淘宝遥现金搞了个红包&#xff0c;花了26元买了块SSU的2.5G网卡。说实话这个价位连散热片都没有&#xff0c;确实挺丐的。稍后测下速度看…...

数学建模美赛入门

数学建模需要的学科知识 高等数学线性代数 有很多算法的掌握是需要高等数学和线代的相关知识 如&#xff1a;灰色预测模型需要微积分知识&#xff1b;神经网络需要用到导数知识&#xff1b;图论和层次分析法等都需要用到矩阵计算的相关知识等&#xff1b; 概率论与数理统计&am…...

两段序列帧动画播放,在ios机型上出现闪屏

使用场景&#xff1a;两段序列帧动画连接播放&#xff0c;先播放第一段播一次&#xff0c;再播放第二段&#xff0c;第二段循环播放&#xff0c;在ios机型上出现动画闪动&#xff0c;播放不正常。 错误的写法&#xff1a;把每一段序列帧动画单独写在了定义的动画里 .gacha-bg…...

【C++深度探索】全面解析多态性机制(二)

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;C从入门至进阶 这里将会不定期更新有关C/C的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 前言 我…...

MySQL配置数据库的连接命令

MySQL配置数据库连接命令 在MySQL中&#xff0c;配置数据库连接的命令涉及创建用户、授予权限、配置主从复制等多个方面。以下是常用的命令及其用途&#xff1a; 创建用户 创建一个新的数据库用户并为其设置密码&#xff1a; CREATE USER usernamehost IDENTIFIED BY passwo…...

如何设计网站的首页/网站推广哪家好

下载到SlideMenu的源码&#xff0c;打开例子&#xff0c;发现有些错误&#xff0c;先把依赖的包给导入发现在BaseActivity有几个红叉&#xff0c;提示不能使用getActionBar...什么的分析一下其使用过程&#xff0c;首先 BaseActivity extends SlidingFragmentActivity为了兼容性…...

深圳p2p网站建设/西安seo推广公司

1.1 管道格式 将一个命令的输出作为另一个命令的输入&#xff0c;这个过程叫作管道连接&#xff08;piping&#xff09;。 command1 | command2 #管道连接格式Linux系统实际上会同时运行这两个命令&#xff0c;在 系统内部将它们连接起来。在第一个命令产生输出的同时&#x…...

帮一个公司做网站多少钱/超级优化

目前&#xff0c;信息流短视频排序是基于CTR预估Wide&Deep深层模型。在Wide&Deep模型基础上做一系列相关优化&#xff0c;包括相关性与体感信号引入、多场景样本融合、多模态学习、树模型等&#xff0c;均取得不错收益。 总体上&#xff0c;短视频模型优化可分为两部分…...

大学生网站建设报告/汕头企业网络推广

CAN协议和标准规范 1 由ISO标准化的CAN协议 CAN协议已经由ISO标准化&#xff0c;有2个版本&#xff0c;如ISO11898和ISO11519-2&#xff0c;它们之间在数据链路层没什么不同&#xff0c;但是在物理层有些区别。 (1) 关于ISO11898&#xff1a;这个标准用于高速CAN通讯。开始的…...

龙岗住房建设局网站/无锡百度竞价推广

JSON&XML&#xff1a; JSON&#xff0d;&#xff0d;&#xff0d;&#xff0d;&#xff0d; //英译 Serialization:序列化 perform:执行 segue&#xff1a;继续 IOS5后 NSJSONSerialization解析 解析JSON SBJSON JSONKit touchJson的第三方库 性能&#xff1a;NSJSONSerial…...

底价网站建设/网络公司排名

青岛大学10数据结构911计算机专业综合青岛大学2013年硕士研究生入学考试试题科目代码&#xff1a; 911 科目名称&#xff1a; 计算机专业综合 (共 13 页)请考生写明题号&#xff0c;将答案全部答在答题纸上&#xff0c;答在试卷上无效须知&#xff1a;本试卷共包括4门专业课程试…...