当前位置: 首页 > news >正文

opencv—常用函数学习_“干货“_5

目录

十五、图像分割

简单阈值分割 (threshold)

自适应阈值分割 (adaptiveThreshold)

颜色范围分割 (inRange)

分水岭算法 (watershed)

泛洪填充 (floodFill)

GrabCut算法 (grabCut)

距离变换 (distanceTransform)

最大稳定极值区域检测 (MSER)

均值漂移滤波 (pyrMeanShiftFiltering)

十六、连通域

计算连通组件 (connectedComponents)

计算连通组件并返回统计信息 (connectedComponentsWithStats)

解释

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


十五、图像分割

        在OpenCV中,图像分割是将图像分割成不同区域或对象的过程,常用于对象检测、识别和图像分析。下面介绍一些常用的图像分割函数及其使用示例。

图像分割函数
thresholdadaptiveThresholdinRangewatershedfloodFill
简单阈值分割自适应阈值分割颜色范围分割分水岭算法泛洪填充
grabCutdistanceTransformMSERpyrMeanShiftFiltering
GrabCut算法距离变换最大稳定极值区域检测均值漂移滤波
简单阈值分割 (threshold)
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用简单阈值分割
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
自适应阈值分割 (adaptiveThreshold)
# 应用自适应阈值分割
adaptive_thresh = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
cv2.imshow('Adaptive Threshold Image', adaptive_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色范围分割 (inRange)
# 读取彩色图像
color_image = cv2.imread('path_to_image.jpg')# 定义颜色范围
lower_bound = np.array([0, 120, 70])
upper_bound = np.array([10, 255, 255])# 转换到HSV颜色空间
hsv_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV)# 应用颜色范围分割
mask = cv2.inRange(hsv_image, lower_bound, upper_bound)
cv2.imshow('Mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
分水岭算法 (watershed)
# 读取图像并转换为灰度图
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# 确定背景区域
kernel = np.ones((3, 3), np.uint8)
sure_bg = cv2.dilate(binary, kernel, iterations=3)# 确定前景区域
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)# 确定未知区域
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)# 标记连通组件
_, markers = cv2.connectedComponents(sure_fg)# 为确保背景为1,增加1
markers = markers + 1# 将未知区域标记为0
markers[unknown == 255] = 0# 应用分水岭算法
markers = cv2.watershed(color_image, markers)
color_image[markers == -1] = [0, 0, 255]cv2.imshow('Watershed', color_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
泛洪填充 (floodFill)
# 应用泛洪填充
flood_filled = color_image.copy()
h, w = flood_filled.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
cv2.floodFill(flood_filled, mask, (0, 0), (255, 0, 0))cv2.imshow('Flood Fill', flood_filled)
cv2.waitKey(0)
cv2.destroyAllWindows()
GrabCut算法 (grabCut)
# 初始化掩码
mask = np.zeros(color_image.shape[:2], np.uint8)# 定义矩形
rect = (50, 50, 450, 290)# 定义模型
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)# 应用GrabCut算法
cv2.grabCut(color_image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
grabcut_image = color_image * mask2[:, :, np.newaxis]cv2.imshow('GrabCut', grabcut_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
距离变换 (distanceTransform)
# 应用距离变换
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
cv2.imshow('Distance Transform', dist_transform)
cv2.waitKey(0)
cv2.destroyAllWindows()
最大稳定极值区域检测 (MSER)
# 创建MSER对象
mser = cv2.MSER_create()# 检测MSER区域
regions, _ = mser.detectRegions(gray)# 绘制检测到的区域
output = color_image.copy()
for p in regions:hull = cv2.convexHull(p.reshape(-1, 1, 2))cv2.polylines(output, [hull], 1, (0, 255, 0))cv2.imshow('MSER', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
均值漂移滤波 (pyrMeanShiftFiltering)
# 应用均值漂移滤波
mean_shift_image = cv2.pyrMeanShiftFiltering(color_image, 21, 51)
cv2.imshow('Mean Shift Filtering', mean_shift_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这些示例展示了如何使用OpenCV中的各种图像分割函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像分割任务。

十六、连通域

        在OpenCV中,连通域分析是图像处理中的一个重要步骤,用于检测和标记图像中的连通区域。主要有两个函数:connectedComponentsconnectedComponentsWithStats。下面介绍这些函数及其使用示例。

连通域分析函数
connectedComponentsconnectedComponentsWithStats
计算连通组件计算连通组件并返回统计信息
计算连通组件 (connectedComponents)
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用阈值处理
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 计算连通组件
num_labels, labels = cv2.connectedComponents(binary_image)# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
计算连通组件并返回统计信息 (connectedComponentsWithStats)
# 计算连通组件及统计信息
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image)# 输出每个连通组件的统计信息
for i in range(num_labels):print(f"Component {i}:")print(f"  Bounding box: {stats[i, cv2.CC_STAT_LEFT]}, {stats[i, cv2.CC_STAT_TOP]}, "f"{stats[i, cv2.CC_STAT_WIDTH]}, {stats[i, cv2.CC_STAT_HEIGHT]}")print(f"  Area: {stats[i, cv2.CC_STAT_AREA]}")print(f"  Centroid: {centroids[i]}")# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components with Stats', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
解释
  • connectedComponents:此函数返回连通组件的数量和每个像素所属的标签。
  • connectedComponentsWithStats:此函数除了返回标签外,还返回每个连通组件的统计信息(如边界框、面积)和重心。

        这些示例展示了如何使用OpenCV中的连通域分析函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的连通域检测和分析任务。

相关文章:

opencv—常用函数学习_“干货“_5

目录 十五、图像分割 简单阈值分割 (threshold) 自适应阈值分割 (adaptiveThreshold) 颜色范围分割 (inRange) 分水岭算法 (watershed) 泛洪填充 (floodFill) GrabCut算法 (grabCut) 距离变换 (distanceTransform) 最大稳定极值区域检测 (MSER) 均值漂移滤波 (pyrMean…...

JAVA零基础学习1(CMD、JDK、环境变量、变量和键盘键入、IDEA)

JAVA零基础学习1(CMD、JDK、环境变量、变量和键盘键入、IDEA) CMD常见命令配置环境变量JDK的下载和安装变量变量的声明和初始化声明变量初始化变量 变量的类型变量的作用域变量命名规则示例代码 键盘键入使用 Scanner 类读取输入步骤示例代码 常用方法处…...

Redis的安装配置及IDEA中使用

目录 一、安装redis,配置redis.conf 1.安装gcc 2.将redis的压缩包放到指定位置解压 [如下面放在 /opt 目录下] 3.编译安装 4.配置redis.conf文件 5.开机自启 二、解决虚拟机本地可以连接redis但是主机不能连接redis 1.虚拟机网络适配器网络连接设置为桥接模式…...

ubuntu 物理内存爆炸而不使用虚拟内存的问题

ubuntu 物理内存不足时有时候会不去使用虚拟内存,让虚拟内存空闲,而直接关闭占用内存的进程,如果在进行模型测试或训练时,就会导致训练或测试进程被杀死。 1. 修改 swappiness: cat /proc/sys/vm/swappiness sudo sysc…...

Python实现音频均衡和降噪

使用librosa库来读取音频文件,音频处理是一个复杂过程,这里只是简单的进行降噪和均衡。 import librosa import soundfile as sf def improve_audio_quality(input_file, output_file): # 读取音频文件 audio, sample_rate librosa.load(input_…...

【JavaScript 算法】贪心算法:局部最优解的构建

🔥 个人主页:空白诗 文章目录 一、贪心算法的基本概念贪心算法的适用场景 二、经典问题及其 JavaScript 实现1. 零钱兑换问题2. 活动选择问题3. 分配问题 三、贪心算法的应用四、总结 贪心算法(Greedy Algorithm)是一种逐步构建解…...

Azcopy Sync同步Azure文件共享

文章目录 Azcopy Sync同步文件共享一、工作原理二、安装 AzCopy在 Windows 上在 Linux 上 三、资源准备1. 创建源和目标 Azure 存储账户2. 创建源和目标文件共享3. 确定路径4. 生成源和目的存储账户的共享访问签名(SAS)令牌配置权限示例生成的 URL 四、A…...

单例模式 饿汉式和懒汉式的区别

单例模式(Singleton Pattern)是设计模式中最简单、最常见、最容易实现的一种模式。它确保一个类仅有一个实例,并提供一个全局访问点。单例模式主要有两种实现方式:饿汉式(Eager Initialization)和懒汉式&am…...

Python中的模块和包的定义以及如何在Python中导入和使用它们

在Python中,模块(Module)和包(Package)是组织代码以便重用和共享的基本单元。它们使得Python代码更加模块化,易于管理和维护。 模块(Module) 模块是一个包含Python代码的文件&…...

设计模式使用场景实现示例及优缺点(结构型模式——组合模式)

结构型模式 组合模式(Composite Pattern) 组合模式使得用户对单个对象和组合对象的使用具有一致性。 有时候又叫做部分-整体模式,它使我们树型结构的问题中,模糊了简单元素和复杂元素的概念,客户程序可以像处理简单元…...

《系统架构设计师教程(第2版)》第11章-未来信息综合技术-06-云计算(Cloud Computing) 技术概述

文章目录 1. 相关概念2. 云计算的服务方式2.1 软件即服务 (SaaS)2.2 平台即服务 (PaaS)2.3 基础设施即服务 (IaaS)2.4 三种服务方式的分析2.4.1 在灵活性2.4.2 方便性方 3. 云计算的部署模式3.1 公有云3.2 社区云3.3 私有云3.4 混合云 4. 云计算的发展历程4.1 虚拟化技术4.2 分…...

网络安全工作者如何解决网络拥堵

网络如同现代社会的血管,承载着信息的血液流动。然而,随着数据流量的激增,网络拥堵已成为不容忽视的问题,它像是一场数字世界的交通堵塞,减缓了信息传递的速度,扰乱了网络空间的秩序。作为网络安全的守护者…...

电脑显示mfc140u.dll丢失的修复方法,总结7种有效的方法

mfc140u.dll是什么?为什么电脑会出现mfc140u.dll丢失?那么mfc140u.dll丢失会给电脑带来什么影响?mfc140u.dll丢失怎么办?今天详细给大家一一探讨一下mfc140u.dll文件与mfc140u.dll丢失的多种不同解决方法分享! 一、mfc…...

ospf的MGRE实验

第一步:配IP [R1-GigabitEthernet0/0/0]ip address 12.0.0.1 24 [R1-GigabitEthernet0/0/1]ip address 21.0.0.1 24 [R1-LoopBack0]ip address 192.168.1.1 24 [ISP-GigabitEthernet0/0/0]ip address 12.0.0.2 24 [ISP-GigabitEthernet0/0/1]ip address 21.0.0.2 24…...

开发指南047-前端模块版本

平台前端框架内置了一个文件version.vue <template> <div> <br> 应用名称: {{name}} <br> 当前版本&#xff1a;{{version}} <br> 服务网关: {{gateway}} </div> </template> <scrip…...

c#中的字符串方法

Concat() String.Concat(字符串1 字符串n) 字符串拼接 Contains () 字符串1.Contains(字符串2) 字符串1是否包含字符串2返回布尔值 CopyTo() 字符串1.CopyTo(0,空数组,0,5); 从哪开始 复制到哪里 从哪开始存 存储的个数 tartsWith 字符串1.StartsWith("字符串") 以…...

成像光谱遥感技术中的AI革命:ChatGPT

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境&#xff0c;是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型&#xff0c;在理解和生成人类语言方面表现出了非凡的能力&#xff0c;ChatGPT在遥感中的应用&#xff0c;人工智能在…...

学习分布式事务遇到的小bug

一、介绍Seata 在处理分布式事务时我用到是Seata&#xff0c;Seata的事务管理中有三个重要的角色&#xff1a; TC (Transaction Coordinator) - 事务协调者&#xff1a;维护全局和分支事务的状态&#xff0c;协调全局事务提交或回滚。 TM (Transaction Manager) - 事务管理器…...

ElasticSearch学习之路

前言 为什么学ElasticSearch&#xff1f; 数据一般有如下三种类型&#xff1a; 结构化数据&#xff0c;如&#xff1a;MySQL的表&#xff0c;一般通过索引提高查询效率非结构化数据&#xff0c;如&#xff1a;图片、音频等不能用表结构表示的数据&#xff0c;一般保存到mong…...

(C++二叉树02) 翻转二叉树 对称二叉树 二叉树的深度

226、翻转二叉树 递归法&#xff1a; 交换两个结点可以用swap()方法 class Solution { public:TreeNode* invertTree(TreeNode* root) {if(root NULL) return NULL;TreeNode* tem root->left;root->left root->right;root->right tem;invertTree(root->l…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...