当前位置: 首页 > news >正文

目标检测入门:4.目标检测中的一阶段模型和两阶段模型

在前面几章里,都只做了目标检测中的目标定位任务,并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一,旨在从图像中识别出所有感兴趣的目标,并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。本章将以简单的任务来对这两种模型进行介绍。

一、一阶段模型(One-Stage Model)

一阶段模型是指在目标检测任务中,直接输入图像并同事输出图中存在的物体类别和对应的位置信息,无需先提取候选区域。这类模型通常具有较高的检测速度,但可能在检测精度上略有牺牲。其主要特点是将目标检测问题转化为回归问题处理,直接预测出目标的位置和类别信息。

优点:

  • 检测速度快,适合实时性要求高的应用场景。
  • 模型结构相对简单,易于实现和部署。

缺点:

  • 相对于两阶段模型,检测精度可能稍逊一筹
  • 对于小目标的检测能力仍需进一步提升

一阶段模型中的典型算法有YOLO(You Only Look Once)系列(YOLO1、YOLO2、......YOLO8)、CenterNet等。在后面的章节中才会仔细介绍这些算法,这里暂时只用简单的检测任务和简单的神经网络模型介绍一阶段模型和二阶段模型的主要区别。

一阶段模型

如上图所示,图像输入模型中,模型输出预测框坐标和预测框对应目标的类别,只有一个阶段,预测值只需通过一个模型即可得到。

二、两阶段模型(Two-Stage Model)

两阶段模型在目标检测任务中,首先生成一系列作为样本的候选区域(Region Proposal),然后对这些候选区域进行分类和位置回归,以确定它们是否包含目标物体以及目标物体的精确位

优点

  • 检测精度高,能够处理复杂的检测任务。
  • 适用于对检测精度要求较高的应用场景。

缺点

  • 检测速度相对较慢,难以满足实时性要求较高的应用场景。
  • 候选区域的生成质量对模型的最终性能有较大影响,需要精心设计和优化。

两阶段模型中的典型算法有R-CNN系列,包括R-CNN、Fast R-CNN、Faster R-CNN等。其中又以Faster R-CNN使用较为广泛。在后面的章节才会仔细介绍Faster R-CNN算法。                                                                                

两阶段模型

如上图所示,图像输入模型中,第一个神经网络模型输出可能存在目标的建议框和与输入图像对应的特征图,再将特征图和建议框输入到第二个神经网络模型中,通过对建议框的筛选回归和分类得到最终的预测框坐标和对应的类别,预测值需要通过两个模型才可得到。两阶段模型在训练时对应会有两个部分的损失,需要准备的标签相较于一阶段模型多,在模型训练时推理的时间也需要更多,但最终的模型的检测效果通常下比一阶段模型较好。

相关文章:

目标检测入门:4.目标检测中的一阶段模型和两阶段模型

在前面几章里,都只做了目标检测中的目标定位任务,并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一,旨在从图像中识别出所有感兴趣的目标,并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。…...

zookeeper+kafka消息队列群集部署

kafka拓扑架构 zookeeper拓扑架构...

[K8S]一、Flink on K8S

Kubernetes | Apache Flink 先编辑好这5个配置文件,然后再直接执行 kubectl create -f ./ kubectl get all kubectl get nodes kubectl get pods kubectl get pod -o wide kubectl get cm -- 获取所有的configmap 配置文件 kubectl logs pod_name -- 查看…...

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述 3.1.1 信息系统的定义3.1.1.1 信息系统3.1.1.2 信息化3.1.2 信息系统的发展3.1.2.1 初始阶段3.1.2.2 传播阶段3.1.2.3 控制阶段3.1.2.4 集成阶段3.1.2.5 数据管理阶段3.1.2.6 成熟阶段3.1.3 信息系统的分类3.…...

Gemma的简单理解;Vertex AI的简单理解,与chatGpt区别

目录 Gemma的简单理解 Vertex AI的简单理解 Gemma Vertex AI Gemma Vertex AI和chatcpt区别 一、定义与功能 二、技术特点 三、应用场景 四、获取与部署 Gemma的简单理解 定义与功能: Gemma是谷歌开源的一款大语言模型,它采用了Gemini架构,并提供了20亿(2B)和7…...

Lua 数组

Lua 数组 Lua 是一种轻量级的编程语言,广泛用于游戏开发、脚本编写和其他应用程序。在 Lua 中,数组是一种非常基础和重要的数据结构。本文将详细介绍 Lua 数组的概念、用法和操作方法。 数组的概念 在 Lua 中,数组实际上是一个列表&#x…...

游戏中的敏感词算法初探

在游戏中起名和聊天需要服务器判断是否含有敏感词,从而拒绝或屏蔽敏感词显示,这里枚举一些常用的算法和实际效果。 1.字符串匹配算法 常用的有KMP,核心就是预处理出next数组,也就是失配信息,时间复杂度在O(mn) 。还有个…...

使用Java和Apache Kafka Streams实现实时流处理应用

使用Java和Apache Kafka Streams实现实时流处理应用 大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 引言 实时流处理已经成为现代应用开发中不可或缺的一部分。Apache Kafka Streams是一个强大的库…...

分享 .NET EF6 查询并返回树形结构数据的 2 个思路和具体实现方法

前言 树形结构是一种很常见的数据结构,类似于现实生活中的树的结构,具有根节点、父子关系和层级结构。 所谓根节点,就是整个树的起始节点。 节点则是树中的元素,每个节点可以有零个或多个子节点,节点按照层级排列&a…...

【柴油机故障诊断】基于斑马优化算法ZOA优化柴油机故障诊断附Matlab代码

% 柴油机故障诊断 - 基于斑马优化算法(Zebra Optimization Algorithm,ZOA)优化Transformer模型 % 代码示例仅为演示用途,实际应用中可能需要根据具体情况进行适当修改 % 初始化参数 maxIterations = 100; % 最大迭代次数 populationSize = 50; % 种群大小 % 斑马优化算法…...

C1W4.Assignment.Naive Machine Translation and LSH

理论课:C1W4.Machine Translation and Document Search 文章目录 1. The word embeddings data for English and French words1.1The dataThe subset of dataLoad two dictionaries 1.2 Generate embedding and transform matricesExercise 1: Translating English…...

智能听诊器:宠物健康监测的革新者

宠物健康护理领域迎来了一项激动人心的技术革新——智能听诊器。这款创新设备以其卓越的精确度和用户友好的操作,为宠物主人提供了一种全新的健康监测方法。 使用智能听诊器时,只需将其放置在宠物身上,它便能立即捕捉到宠物胸腔的微小振动。…...

001、Mac系统上Stable Diffusion WebUI环境搭建

一、目标 如标题所述,在苹果电脑(Mac)上搭建一套Stable Diffusion本地服务,以实现本地AI生图目的。 二、安装步骤 1、准备源码【等价于准备软件】 # 安装一系列工具库,包括cmake,protobuf,rust,python3.10,git,wge…...

k8s一些名词解释

潮汐计算 是一种根据负载变化动态调整资源分配的计算模式。其核心思想是利用峰值和非峰值时段的资源需求差异,动态地扩展或缩减计算资源。在 Kubernetes 环境中,可以通过自动扩展(auto-scaling)机制,根据工作负载的变化自动调整计算资源,最大化资源利用率并减少不必要的…...

ArkUI组件——循环控制/List

循环控制 class Item{name: stringprice:number}private items:Array<Item> [new Item("A0",2399),new Item("BE",1999),new Item("Ro",2799)] ForEach(this.items,(item:Item) > {})List组件 列表List是一种复杂的容器&#xff0c;…...

定制开发AI智能名片商城微信小程序在私域流量池构建中的应用与策略

摘要 在数字经济蓬勃发展的今天&#xff0c;私域流量已成为企业竞争的新战场。定制开发AI智能名片商城微信小程序&#xff0c;作为私域流量池构建的创新工具&#xff0c;正以其独特的优势助力企业实现用户资源的深度挖掘与高效转化。本文深入探讨了定制开发AI智能名片商城微信…...

网络安全(含面试题版)

一、网络概念 网络&#xff1a;一组相互连接的计算机&#xff0c;多台计算机组成&#xff0c;使用物理线路进行连接 作用&#xff1a; 数据交换 资源共享 二、网络分类 计算机网络覆盖的地理区域决定了它的类型。一般分为局域网(LAN)、城域网(MAN)、广域网(WAN)。 三、www万维网…...

牛客 7.13 月赛(留 C逆元 Ddp)

B-最少剩几个&#xff1f;_牛客小白月赛98 (nowcoder.com) 思路 奇数偶数 奇数&#xff1b;奇数*偶数 奇数 所以在既有奇数又有偶数时&#xff0c;两者结合可以同时删除 先分别统计奇数&#xff0c;偶数个数 若偶个数大于奇个数&#xff0c;答案是偶个数-奇个数 若奇个数…...

LeetCode 92. 反转链表 II

LeetCode 92. 反转链表 II 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4…...

mac M1 创建Mysql8.0容器

MySLQ8.0 拉取m1镜像 docker pull mysql:8.0创建挂载文件夹并且赋予权限 sudo chmod 777 /Users/zhao/software/dockerLocalData/mysql 创建容器并且挂载 docker run --name mysql_8 \-e MYSQL_ROOT_PASSWORDadmin \-v /Users/zhao/software/dockerLocalData/mysql/:/var/l…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...