当前位置: 首页 > news >正文

人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解。模型剪枝是深度学习领域中一项关键的技术,旨在减少神经网络中的冗余权重,从而降低计算成本和内存占用,同时尽可能保持模型性能不变。本课程将深入探讨剪枝技巧及其在模型量化与部署中的应用,适合中级人工智能算法工程师学习。
在这里插入图片描述

文章目录

  • 一、引言
  • 二、非结构化剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 三、结构化剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 四、随机剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 五、范数剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 六、迭代剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 七、总结

一、引言

随着深度学习技术的不断发展,模型规模逐渐增大,计算资源需求也随之增加。为了满足移动端和嵌入式设备的部署需求,模型的量化与剪枝技术应运而生。本文将详细介绍模型剪枝中的非结构化剪枝、结构化剪枝、随机剪枝、范数剪枝和迭代剪枝等技巧,并使用PyTorch搭建完整可运行的代码。

二、非结构化剪枝

1. 数学原理

非结构化剪枝是指对模型中的权重矩阵进行稀疏化处理,去除不重要的连接。具体来说,对于权重矩阵 W W W,我们可以通过以下公式进行剪枝:
W ′ = W ∗ m a s k W' = W * mask W=Wmask
其中, m a s k mask mask是一个与 W W W形状相同的矩阵,其元素为0或1。0表示对应的权重被剪枝,1表示保留。

2. 代码实现

import torch
import torch.nn.utils.prune as prune
# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 非结构化剪枝,剪掉50%的权重
prune.l1_unstructured(fc, 'weight', amount=0.5)
# 查看剪枝后的权重
print(fc.weight)

三、结构化剪枝

1. 数学原理

结构化剪枝是指对整个滤波器或通道进行剪枝。与非结构化剪枝相比,结构化剪枝更容易实现硬件加速。对于权重矩阵W,结构化剪枝可以表示为:
W ′ = W ∗ M W' = W * M W=WM
其中, M M M是一个与 W W W形状相同的矩阵,但其元素为0或1的块状矩阵。

2. 代码实现

# 假设有一个卷积层
conv = torch.nn.Conv2d(3, 10, kernel_size=3)
# 结构化剪枝,剪掉25%的滤波器
prune.ln_structured(conv, 'weight', amount=0.25, n=2, dim=0)
# 查看剪枝后的权重
print(conv.weight)

四、随机剪枝

1. 数学原理

随机剪枝是一种简单的剪枝方法,它随机选择一部分权重进行剪枝。具体操作如下:
1.设定剪枝比例:决定要移除的权重比例。
2.生成随机数:为每个权重生成0到1之间的随机数。
3.执行剪枝:若随机数小于剪枝比例,将权重置为0。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 随机剪枝,剪掉30%的权重
prune.random_unstructured(fc, 'weight', amount=0.3)
# 查看剪枝后的权重
print(fc.weight)

五、范数剪枝

1. 数学原理

范数剪枝是根据权重的大小进行剪枝。具体来说,对于权重矩阵 W W W,我们可以计算其 L 1 L_1 L1范数或 L 2 L_2 L2范数,然后剪掉范数较小的权重。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 范数剪枝,剪掉20%的权重
prune.ln_structured(fc, 'weight', amount=0.2, n=1, dim=0)
# 查看剪枝后的权重
print(fc.weight)

六、迭代剪枝

1. 数学原理

迭代剪枝(Iterative Pruning)是一种常用的模型压缩技术,旨在减少神经网络的参数数量,以降低计算成本和存储需求,同时尽量保持模型的性能。这种方法通过逐步移除网络中不重要的权重,允许模型在每次剪枝后重新学习,以适应参数的减少。下面是对迭代剪枝过程的详细说明:
初始化剪枝比例
在开始剪枝之前,首先设定一个初始的剪枝比例。这个比例决定了第一次剪枝时要移除的权重数量占总权重的比例。例如,如果设置为10%,则第一次剪枝将移除所有权重中绝对值最小的10%。
对模型进行剪枝
根据当前的剪枝比例,识别并移除模型中不重要的权重。通常,权重的重要性可以通过它们的绝对值大小来衡量,绝对值越小的权重被认为越不重要。剪枝操作可以是直接将权重设置为零(即权重掩码),也可以是物理上删除这些权重,这取决于具体的实现方式。
训练模型
剪枝后,模型的结构发生了变化,因此需要重新训练模型,以便模型能够适应新的结构。这一步骤通常称为“微调”(Fine-tuning),目的是让模型在参数减少的情况下尽可能恢复到剪枝前的性能水平,甚至进一步优化。
重复步骤2和3
迭代剪枝的核心在于重复上述剪枝和微调的过程,每次迭代都根据一定的策略增加剪枝比例,直到达到预定的目标剪枝比例。例如,从10%开始,每轮迭代增加5%,直到达到50%的剪枝比例。

在整个过程中,有几个关键点需要注意:
剪枝策略:如何选择要剪掉的权重,除了基于权重的绝对值大小,还可以考虑其他因素,如梯度、激活值等。
微调策略:剪枝后的微调需要足够的训练轮次,以确保模型能够充分适应结构的变化。
剪枝比例的递增策略:剪枝比例的增加速度会影响模型的性能和稳定性,过快的增加可能导致模型性能急剧下降。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 迭代剪枝,总共剪掉60%的权重
for i in range(3):prune.l1_unstructured(fc, 'weight', amount=0.2)# 训练模型
# 查看剪枝后的权重
print(fc.weight)

七、总结

本文详细介绍了模型量化与部署中的剪枝技巧,包括非结构化剪枝、结构化剪枝、随机剪枝、范数剪枝和迭代剪枝。通过数学原理和代码实现,希望读者能更好地理解和应用这些剪枝方法。在实际应用中,可以根据模型特点和硬件需求选择合适的剪枝策略。

相关文章:

人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解。模型剪枝是深度学习领域中一项关键的技术,旨在减少神经网络中的冗余权重,从而降低计算成本和内存占用,同…...

JavaScript 实例:掌握编程技巧

JavaScript 实例:掌握编程技巧 JavaScript 是一种广泛使用的编程语言,它为网页添加交互性,是现代网络开发的重要组成部分。本文将通过一系列实例,帮助您更好地理解和掌握 JavaScript 的核心概念和编程技巧。 基础实例:变量和数据类型 首先,让我们从最基础的开始。Java…...

自己做小项目时,配置的Maven需要用阿里云私服加速Jar包的下载

在我的IDEA中,maven配置在了这个地址,然后我需要去这个地址下找到settings.xml的maven配置文件来配置以下的阿里云私服地址来加速jar包的下载!【不然就是下N年很慢!】...

Linux笔记之time命令测量命令的执行时间

Linux笔记之time命令测量命令的执行时间 在Linux中,time命令用于测量命令的执行时间。这对于分析和优化脚本或程序的性能非常有用。time命令会显示三个主要时间指标: real: 从命令开始到结束的实际时间(也称为挂钟时间)。user: …...

《基于 CDC、Spark Streaming、Kafka 实现患者指标采集》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...

重要的单元测试

👽System.out.println(“👋🏼嗨,大家好,我是代码不会敲的小符,目前工作于上海某电商服务公司…”); 📚System.out.println(“🎈如果文章中有错误的地方,恳请大家指正&…...

什么是diff算法?

Diff算法,全称为Difference算法,是一种用于比较和查找两个对象(如文本、源代码、数据结构或任何形式的字符串)之间差异的算法。它在多个领域有着广泛的应用,包括但不限于前端开发、版本控制系统、协同编辑工具等。以下…...

BUUCTF逆向wp [MRCTF2020]Transform

第一步 查壳。该题为64位。 第二步 进入主函数,跟进dword_40F040,它应该与关键字符串有关 分析一下: 初始化和输入 sub_402230(argc, argv, envp); 这行可能是一个初始化函数,用于设置程序环境或处理命令行参数。具体功能不明&#xff0c…...

前端下载文件流 出现乱码 解决方案

1. 后端返回文件格式不是 utf-8 解决方案:后端加 2. 若添加 utf-8 后依旧乱码 请求配置中添加 responseType: arraybuffer, export function downMode() {return http.request({url: baseUrl downTemplate,method: get,responseType: arraybuffer,}); }下载 con…...

Linux/Windows 系统分区

1. Windows 系统 1.1 系统分区 系统分区也叫做磁盘分区,即分盘; 举个例子,好比家里有一个大柜子,把衣服,鞋子,袜子都放在里面,由于没有隔断,找的时候非常麻烦,找是能找…...

C/C++ xml库

文章目录 一、介绍1.1 xml 介绍1.2 xml 标准1.3 xml 教程1.4 xml 构成 二、C/C xml 库选型2.1 选型范围2.2 RapidXML2.3 tinyxml22.4 pugixml2.5 libxml 五、性能比较5.1 C xml 相关的操作有哪些5.2 rapidxml、Pugixml、TinyXML2 文件读取性能比较 六、其他问题6.1 version和 e…...

UniVue@v1.5.0版本发布:里程碑版本

前言 以后使用UniVue都推荐使用1.5.0以后的版本,这个版本之后,更新的速度将会放缓。 希望这个框架能够切实的帮助大家更好的开发游戏,做出一款好游戏!本开源项目采用的开源协议为MIT协议,完全开源化,以后也…...

在 Windows 上开发.NET MAUI 应用_2.生成你的第一个应用

先决条件 Visual Studio 2022 17.8 或更高版本,并安装了 .NET Multi-platform App UI 工作负载。 可参考上一篇文章:http://t.csdnimg.cn/n38Yy 创建应用 1.启动 Visual Studio 2022。 在开始窗口中,单击“创建新项目”以创建新项目&#…...

配置SMTP服务器的要点是什么?有哪些限制?

配置SMTP服务器安全性如何保障?如何高效配置服务器? SMTP作为电子邮件发送的核心协议,其配置对于确保邮件的成功传递和安全至关重要。AokSend将详细介绍配置SMTP服务器的关键要点,帮助读者建立一个高效、安全的邮件发送系统。 配…...

图形渲染基础-Unity渲染管线介绍

Unity中的渲染管线渲染场景主要分为三个阶段 剔除(Culling) 剔除摄像机不可见对象(视锥体剔除Frustum Culling)和被遮挡对象(遮挡剔除Occlusion Culling)。 渲染(Rendering) 将可见…...

junit mockito service

service类单元测试可以有两种方式 1、使用Autowired启用上下文的Bean走业务逻辑,适用于debug调试 2、使用InjectMocks不启用上下文依懒的Bean采用打桩的形式 打桩注意:service通常业务逻辑复杂,Bean的依懒层次可能很深,初用者常…...

k8s学习——升级后的k8s使用私有harbor仓库

升级后的k8s使用了第三方的容器管理器,安装了nerdctl工具来替代docker进行镜像管理。但是使用docker build打包并上传至harbor仓库的镜像,在部署过程中始终拉不下来,报错证书错误。通过journalctl -xe |grep kubelet 或 journalctl -xe |grep…...

Blender4.2版本正式上线,新版本的5个主要功能!

​Blender刚刚推出了备受瞩目的 Blender 4.2 版本,这款软件专为那些在视觉特效、动画制作、游戏开发和可视化设计领域工作的艺术家们量身打造。作为最新的长期稳定更新,Blender 4.2 不仅稳定可靠,还引入了备受期待的“Eevee Next”实时渲染引…...

【python基础】基本数据类型

文章目录 一. Python基本数据类型1. 整数1.1. python的四种进制1.2. 数中的下划线 2. 浮点数3. 复数4. 布尔型5. 运算符5.1. 算术运算符5.2. 比较运算符5.3. 逻辑运算符5.4 运算符优先级 6. 常量 二. 注释三. Python之禅 一. Python基本数据类型 1. 整数 无长度限制&#xff1…...

应用层——HTTP

像我们电脑和手机使用的应用软件就是在应用层写的,当我们的数据需要传输的时候换将数据传递到传输层。 应用层专门给用户提供应用功能,比如HTTP,FTP… 我们程序员写的一个个解决我们实际的问题都在应用层,我们今天来聊一聊HTTP。 协议 协议…...

剧本杀小程序搭建,为商家带来新的收益方向

近几年,剧本杀游戏成为了游戏市场的一匹黑马,受到了不少年轻玩家的欢迎。随着信息技术的快速发展,传统的剧本杀门店已经无法满足游戏玩家日益增长的需求,因此,剧本杀市场开始向线上模式发展,实现行业数字化…...

十六、【机器学习】【监督学习】- 支持向量回归 (SVR)

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…...

基于FPGA的多路选择器

目录 一、组合逻辑 二、多路选择器简介: 三、实战演练 摘要:本实验设计并实现了一个简单的多路选择器,文章后附工程代码 一、组合逻辑 组合逻辑是VerilogHDL设计中的一个重要组成部分。从电路本质上讲,组合逻辑电路的特点是输…...

面经学习(杭州实在智能实习)

个人评价 秃狼觉得本次的面试是有史以来难度最大的,问了很多陌生的八股文,项目问的比较少,估计是项目本来就没有什么亮点,也是第一次被面试官说菜的面试。不过在后续的学习上还是收获颇丰的。 1.说说你在实习中遇到的难点吧&…...

mysql、oracle、db2数据库连接参数

mysql、oracle、db2数据库连接参数 参数/数据库driverurlMysqlcom.mysql.jdbc.Driver 或 com.mysql.cj.jdbc.Driverjdbc:mysql://localhost:3306/数据库名Oracleoracle.jdbc.driver.OracleDriverjdbc:oracle:thin:localhost:1521:orcl 注:orcl为数据库SIDDB2com.ib…...

redis缓存击穿和缓存穿透的封装、缓存更新的CacheAside方案、数据预热

redis缓存击穿和缓存穿透的封装 一、首先是互斥锁二、封装为工具类三、调用四、数据预热五、缓存更新的CacheAside方案 (来源黑马redis) 一、首先是互斥锁 //拿到锁private boolean tryLock(String key) {Boolean flag stringRedisTemplate.opsForValue…...

ArcGIS Pro SDK (九)几何 5 多边形

ArcGIS Pro SDK (九)几何 5 多边形 文章目录 ArcGIS Pro SDK (九)几何 5 多边形1 构造多边形 - 从映射点的枚举2 构造多边形 - 从包络3 获取多边形的点4 获取多边形的各个部分5 枚举多边形的各个部分6 获取多边形的线段7 构建圆环…...

Docker 镜像使用和安装

​ 1、简介 Docker是一个开源的应用容器引擎;是一个轻量级容器技术; Docker支持将软件编译成一个镜像;然后在镜像中各种软件做好配置,将镜像发布出去,其他使用者可以直接使用这个镜像; 运行中的这个镜像…...

JAVA:Filer过滤器+案例:请求IP访问限制和请求返回值修改

JAVA:Filer过滤器 介绍 Java中的Filter也被称为过滤器,它是Servlet技术的一部分,用于在web服务器上拦截请求和响应,以检查或转换其内容。 Filter的urlPatterns可以过滤特定地址http的请求,也可以利用Filter对访问请求…...

FastAPI -- 第三弹(自定义响应、中间件、代理、WebSockets)

路径操作的高级配置 OpenAPI 的 operationId from fastapi import FastAPIapp FastAPI()# 通过 operation_id 参数设置 app.get("/items/", operation_id"some_specific_id_you_define") async def read_items():return [{"item_id": "F…...

网站内备案名称 修改/餐饮营销方案

How to Find Happiness Without Buying It如何不花钱就能找到乐子Our materialistic society has led us to believe that happiness cannot be obtained without having money. 在这个物质社会,我们深信没有钱就没有幸福感。 Rather than learning to be satisfi…...

厦门的服装商城网站建设/湘潭高新区最新新闻

转自:https://www.pinlue.com/article/2015/06/1408/198772091229.html...

网站开发数据交互/怎么引流到微信呢

给定一个字符串,找到它的第一个不重复的字符,并返回它的索引。如果不存在,则返回 -1。 案例: s "leetcode" 返回 0.s "loveleetcode", 返回 2. 我的思路: 利用字典记录每个字母出现的次数O(N) Python代…...

公司做网站的费用计什么科目/郑州百度seo网站优化

再看case语句,case语句只处理单条记录,而不是set 列名的使用,可以当做数值来使用; case when 后面简直是完美的的,什么东西都是能放的,只要是一个逻辑上的true/false的逻辑就可以; 执行顺序之加…...

代驾软件系统多少钱一套/系统优化软件排行榜

...

东营哪里做网站/seo工程师招聘

这里采用的是Edushi接口(详情请看http://www.edushi.com/api/freeAPI.htm) 目前(2007.03.07)只支持以下城市:杭州(hz) 上海(sh) 青岛(qd) 深圳(sz) 西安(xian) 长沙(changsha)成都(chengdu) 广州(guangzhou) 嘉兴(jiaxing) 佛山(fs) 温州(wz)上虞(sy) 余姚(yy) 丽水(lishui)1…...