parallel 详细解析 Java 8 Stream API 中的 parallel 方法
详解Java Stream的并行处理(Parallel)
Java 8 引入了Stream API,提供了一种便捷而高效的方式来处理集合数据。Stream API使得对数据集合的操作变得更为简洁和易读。
其中,并行流(parallelStream)是Stream API的一个重要特性,能够利用多核处理器的优势并行处理数据,提升处理大数据量时的效率。
1. 什么是并行流?
并行流是Stream API的一种扩展,允许数据源在多个线程上并行处理元素。
在集合数据量较大或需要对数据进行密集计算时,使用并行流能够显著提高程序的性能。
它通过默认的ForkJoinPool实现多线程处理,将一个任务分割成多个子任务并行执行,然后将结果合并。
2. 如何创建并使用并行流?
使用并行流非常简单,只需在普通的Stream对象上调用.parallel()方法即可将其转换为并行流。例如:
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 创建并行流
List<Integer> parallelResult = numbers.parallelStream().map(x -> x * x).collect(Collectors.toList());
在这个例子中,parallelStream()方法将numbers列表转换为一个并行流,然后对每个元素进行平方操作,并使用.collect(Collectors.toList())将结果收集到新的列表中。
3. 并行流的优势与适用场景
性能提升:对于大数据集合或需要密集计算的操作,使用并行流能够利用多核处理器,加速数据处理过程。
简化并发编程:相比手动编写多线程代码,使用并行流能够避免显式地管理线程,简化并发编程的复杂性。
适用于大规模数据处理:当需要对大量数据进行过滤、映射、排序或聚合等操作时,使用并行流能够更快地完成任务。
4. 并行流的注意事项与限制
线程安全性:并行流的操作需要确保处理的数据是线程安全的,避免因为多线程同时修改数据而引发的问题。
避免阻塞操作:在使用并行流时,应避免在操作中引入可能导致线程阻塞的操作,以充分利用并行执行的优势。
性能评估与调优:并行流的性能受多种因素影响,包括数据量、硬件配置以及操作的复杂度,因此在使用并行流时需要进行性能评估和可能的调优。
5. 示例:并行流的应用场景
示例一:计算元素平方和
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用并行流计算平方和
int sumOfSquaresParallel = numbers.parallelStream().map(x -> x * x).reduce(0, Integer::sum);
System.out.println("并行流计算平方和:" + sumOfSquaresParallel);
在这个例子中,使用并行流可以加速对大量数据进行平方和计算的操作。
示例二:并行排序
List<Integer> numbers = Arrays.asList(10, 5, 7, 1, 8, 3, 9, 2, 4, 6);// 使用并行流排序
List<Integer> sortedNumbersParallel = numbers.parallelStream().sorted().collect(Collectors.toList());
System.out.println("并行流排序结果:" + sortedNumbersParallel);
通过并行流,可以有效地在多线程环境下对数据进行排序,提高排序算法的执行效率。
示例三:并行流在大数据处理中的应用
假设我们需要对一个大型数据集进行复杂的数据转换和聚合操作。
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;public class ParallelExample {public static void main(String[] args) {// 生成一个大数据集,例如从1到1000000的整数List<Integer> largeData = IntStream.rangeClosed(1, 1_000_000).boxed().collect(Collectors.toList());// 使用串行流计算所有元素的平方和long startTime = System.currentTimeMillis();int sumOfSquaresSerial = largeData.stream().map(x -> x * x).reduce(0, Integer::sum);long endTime = System.currentTimeMillis();System.out.println("串行流计算平方和耗时:" + (endTime - startTime) + " 毫秒");// 使用并行流计算所有元素的平方和startTime = System.currentTimeMillis();int sumOfSquaresParallel = largeData.parallelStream().map(x -> x * x).reduce(0, Integer::sum);endTime = System.currentTimeMillis();System.out.println("并行流计算平方和耗时:" + (endTime - startTime) + " 毫秒");}
}
在上述示例中,通过并行流可以看到在大数据量计算中的性能提升,尤其是对于需要执行密集计算的任务,如平方操作。
这些例子展示了如何简单而直观地使用并行流来提升Java程序的性能,特别是在处理大规模数据时。在实际应用中,选择合适的流操作方式(串行流或并行流)可以显著影响程序的执行效率和响应时间。
6. 总结
并行流是Java Stream API强大的特性之一,能够轻松实现多核处理器的并行计算能力,从而加速对大数据量集合的处理。
在使用并行流时,需要注意线程安全性和性能评估,以充分发挥其优势。通过合理地使用并行流,可以使Java程序在处理大规模数据时更为高效和可扩展。
希望本文能帮助您更好地理解并行流的概念、用法和适用场景,从而在实际开发中更加灵活地利用Java Stream API提升代码的效率和性能。
相关文章:
parallel 详细解析 Java 8 Stream API 中的 parallel 方法
详解Java Stream的并行处理(Parallel) Java 8 引入了Stream API,提供了一种便捷而高效的方式来处理集合数据。Stream API使得对数据集合的操作变得更为简洁和易读。 其中,并行流(parallelStream)是Stream …...
不同业务场景下通过mars3d实现绕点旋转效果
1.鼠标单击地图某一处就对该点进行绕点旋转效果 相关代码: 1.相关绕点旋转的初始化代码: const rotatePoint new mars3d.thing.RotatePoint({direction: false, // 方向 true逆时针,false顺时针time: 50 // 给定飞行一周所需时间(单位 秒)&…...
重塑水利未来:智慧水利解决方案的探索与实践,从物联网、大数据到人工智能,科技如何赋能水利行业,实现智慧化管理与决策
本文关键词:智慧水利、智慧水利工程、智慧水利发展前景、智慧水利技术、智慧水利信息化系统、智慧水利解决方案、数字水利和智慧水利、数字水利工程、数字水利建设、数字水利概念、人水和协、智慧水库、智慧水库管理平台、智慧水库建设方案、智慧水库解决方案、智慧…...
IO、进程、线程03
第一题:预习 opendir 和 readdir函数 opendir 和 readdir 是两个在C语言(特别是使用POSIX标准的系统,如Linux和UNIX)中用于目录遍历的函数。这两个函数属于标准的C库中的目录操作部分,通常与<dirent.h>头文件一…...
算法力扣刷题记录 五十二【617.合并二叉树】
前言 二叉树篇,继续。 记录 五十二【617.合并二叉树】 一、题目阅读 给你两棵二叉树: root1 和 root2 。 想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要…...
Java中的ArrayList和LinkedList有什么区别?
Java中的ArrayList和LinkedList是两种常用的集合实现类,它们都属于Java集合框架的一部分,但它们在内部实现、性能特点、使用场景等方面存在明显的区别。以下是对这两种集合的详细比较: 1. 数据结构差异 ArrayList:ArrayList是动…...
Linux C++ 058-设计模式之解释器模式
Linux C 058-设计模式之解释器模式 本节关键字:Linux、C、设计模式、解释器模式 相关库函数: 概念 解释器模式(Interpreter Pattern)提供了评估语言的语法或表达式的方式,它属于行为型模式。 解释器模式用于构建一…...
MDK5没有DeviceName
遇到的问题是Jlink驱动问题 不是引脚接反 使用国产GD单片机不同的工程,有的有Device Name,有的没有Device Name(下图是弄好的情况,有Device Name) 硬件链接,和设备都没有问题:无法仿真,无法下…...
在LabVIEW中实现图像矫正
在LabVIEW中实现图像矫正,特别是将倾斜的笔记本图像(如左图)校正为正视图像(如右图),通常需要以下几个步骤: 1. 获取图像 使用图像采集设备或加载图像文件来获取图像数据。 2. 图像预处理 对…...
Apache httpd-vhosts.conf 配置详解(附Demo)
目录 前言1. 基本配置2. http和https3. 重定向和代理配置4. 实战前言 Nginx的相关配置推荐阅读:Nginx将https重定向为http进行访问的配置(附Demo) 1. 基本配置 httpd-vhosts.conf 是 Apache HTTP Server 配置虚拟主机(Virtual Hosts)的文件 虚拟主机允许在一台服务器上…...
活动回顾 | AutoMQ 联合 GreptimeDB 共同探讨新能源汽车数据基础设施
7 月 13 日,AutoMQ 携手 GreptimeDB“新能源汽车数据基础设施” 主题 meetup 在上海圆满落幕。本次论坛多角度探讨如何通过创新的数据管理和存储架构,提升汽车系统的性能、安全性和可靠性,从而驱动行业的持续发展和创新,涵盖 Auto…...
格式工厂转换视频分辨率
1、下载和安装 http://www.pcfreetime.com/formatfactory/CN/index.html 2、打开视频 3、设置分辨率等参数 也可以选择保持原分辨率 4、执行导出 5、打开输出所在位置...
ReAct 大模型提示框架
你可能不熟悉 ReAct,这是一个旨在增强语言模型 (LLM) 决策能力的尖端框架。 通过使用新的观察结果更新 LLM 的上下文窗口并提示其重新评估信息,ReAct 促进了类似于人类思维过程的推理水平,超越了诸如思维链提示之类的旧技术。 在本文中&…...
JavaEE:Lombok工具包的使用以及EditStarter插件的安装
Lombok是一个Java工具库,通过添加注解的方式,简化Java的开发。 目录 1、引入依赖 2、使用 3、原理解释 4、更多使用 5、更快捷的引入依赖 1、引入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lomb…...
基于纹理和统计图像特征集成的计算机辅助乳腺癌检测
诊断通常使用组织病理学切片,可以确定组织是否处于导管原位癌(DCIS)阶段,其中癌细胞尚未扩散到周围乳腺组织,或浸润性导管癌(IDC)阶段,其中细胞已渗透到邻近组织。对于医生来说,检测IDC非常耗时且具有挑战性。因此&…...
Java基础 - 简介和配置环境变量
目录 一. 简介 二. 开发环境配置 下载JDK 配置环境变量 Java_Home配置, Path 配置 CLASSPATH 配置 三. 编辑器选择 1.JetBrains 2. Eclipse 3.vscode 下载vscode 安装 vscode插件 四. 总结 一. 简介 Java 是由 Sun Microsystems 公司(后被 Oracle 收…...
水域救援装备的详细简介_鼎跃安全
水域救援行动需要救援人员配备全面、专业的装备,以应对各种复杂的水域环境和救援任务。水域救援套装应运而生,它集合了水域救援所需的各类关键装备,为救援人员提供全方位的保护和辅助,确保数援行动的高效与安全。 水域救援头盔&am…...
二、BIO、NIO、直接内存与零拷贝
一、网络通信编程基础 1、Socket Socket是应用层与TCP/IP协议族通信的中间软件抽象层,是一组接口,由操作系统提供; Socket将复杂的TCP/IP协议处理和通信缓存管理都隐藏在接口后面,对用户来说就是使用简单的接口进行网络应用编程…...
生成式AI的发展方向:Chat vs Agent
一、整体介绍 生成式AI作为人工智能领域的重要分支,近年来取得了显著进展,并在多个领域展现出巨大潜力。其核心在于通过机器学习和深度学习算法,从大量数据中学习规律和特征,进而生成具有创新性和多样性的文本、图像、音频和视频…...
吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.9-2.10
目录 第三门课 结构化机器学习项目(Structuring Machine Learning Projects)第二周:机器学习策略(2)(ML Strategy (2))2.9 什么是端到端的深度学习?(What is end-to-end deep learning?&#x…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
深入理解 React 样式方案
React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...
k8s从入门到放弃之Pod的容器探针检测
k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...
Qt Quick Controls模块功能及架构
Qt Quick Controls是Qt Quick的一个附加模块,提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中,这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构,与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...
