当前位置: 首页 > news >正文

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

文章目录

  • 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
    • 数据集
      • 创建数据集
      • 数据预处理
      • Tokenizer
    • 模型构建
      • 构建GPT2ForSummarization模型
      • 动态学习率
    • 模型训练
    • 模型推理
    • 总结
    • 打卡

数据集

实验使用nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

创建数据集

from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')from mindspore.dataset import TextFileDataset# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()

数据预处理

原始数据:

article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]

处理后的数据:

[CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization# pad to max_seq_length, only truncate the articletokenized = tokenizer(text=article, text_pair=summary,padding='max_length', truncation='only_first', max_length=max_seq_len)return tokenized['input_ids'], tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])# change column names to input_ids and labels for the following trainingdataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return dataset

Tokenizer

由于GPT2无中文tokenizer,使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)

模型构建

构建GPT2ForSummarization模型

from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def construct(self,input_ids = None,attention_mask = None,labels = None,):outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]# Flatten the tokensloss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return loss

动态学习率

from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateScheduleclass LinearWithWarmUp(LearningRateSchedule):"""Warmup-decay learning rate."""def __init__(self, learning_rate, num_warmup_steps, num_training_steps):super().__init__()self.learning_rate = learning_rateself.num_warmup_steps = num_warmup_stepsself.num_training_steps = num_training_stepsdef construct(self, global_step):if global_step < self.num_warmup_steps:return global_step / float(max(1, self.num_warmup_steps)) * self.learning_ratereturn ops.maximum(0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))) * self.learning_rate

模型训练

num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4num_training_steps = num_epochs * train_dataset.get_dataset_size()from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModelconfig = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallbackckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',epochs=1, keep_checkpoint_max=2)trainer = Trainer(network=model, train_dataset=train_dataset,epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1')  # 开启混合精度trainer.run(tgt_columns="labels")

模型推理

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])dataset = dataset.map(pad, 'article', ['input_ids'])dataset = dataset.batch(batch_size)return datasettest_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)output_text = tokenizer.decode(output_ids[0].tolist())print(output_text)i += 1if i == 1:break

总结

这一节介绍了在MindSpore中使用GPT2LMHeadModel实现文本摘要的实验。实验使用nlpcc2017摘要数据,并使用BertTokenizer进行中文分词,此外还使用了动态学习率来调整模型收敛速度。

打卡

在这里插入图片描述

相关文章:

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要 文章目录 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要数据集创建数据集数据预处理Tokenizer 模型构建构建GPT2ForSummarization模型动态学习率 模型训练模型推理总结打卡 数据集 实验使用nlpcc2017摘要数…...

科研绘图系列:R语言circos图(circos plot)

介绍 Circos图是一种数据可视化工具,它以圆形布局展示数据,通常用于显示数据之间的关系和模式。这种图表特别适合于展示分层数据或网络关系。Circos图的一些关键特点包括: 圆形布局:数据被组织在一个或多个同心圆中,每个圆可以代表不同的数据维度或层次。扇区:每个圆被划…...

追踪Conda包的踪迹:深入探索依赖关系与管理

追踪Conda包的踪迹&#xff1a;深入探索依赖关系与管理 Conda作为Python和其他科学计算语言的包管理器&#xff0c;不仅提供了安装、更新和卸载包的功能&#xff0c;还有一个强大的包跟踪功能&#xff0c;帮助用户理解包之间的依赖关系和管理环境。本文将详细解释如何在Conda中…...

苹果电脑pdf合并软件 苹果电脑合并pdf 苹果电脑pdf怎么合并

在数字化办公日益普及的今天&#xff0c;pdf文件因其跨平台兼容性强、格式稳定等特点&#xff0c;已经成为工作、学习和生活中不可或缺的文件格式。然而&#xff0c;我们常常面临一个问题&#xff1a;如何将多个pdf文件合并为一个&#xff1f;这不仅有助于文件的整理和管理&…...

axios(ajax请求库)

json-server(搭建http服务) json-server用来快速搭建模拟的REST API的工具包 使用json-server 下载&#xff1a;npm install -g json-server创建数据库json文件&#xff1a;db.json开启服务&#xff1a;json-srver --watch db.json axios的基本使用 <!doctype html>…...

Ideal窗口中左右侧栏消失了

不知道大家在工作过程中有没有遇到过此类问题&#xff0c;不论是Maven项目还是Gradle项目&#xff0c;突然发现Ideal窗口右侧图标丢失了&#xff0c;同事今天突然说大象图标不见了&#xff0c;不知道怎样刷新gradle。 不要慌张&#xff0c;下面提供一些解决思路&#xff1a; 1…...

麦芒30全新绽放,中国电信勾勒出AI手机的新方向

高通总裁兼CEO克里斯蒂亚诺阿蒙曾在媒体采访时表示&#xff1a;2024年将成为全球AI手机元年&#xff0c;生成式AI正在“非常快”的进入手机。 把大模型装进手机&#xff0c;由此成了智能终端演进的新方向。三星、华为、OPPO、小米等品牌动作频频&#xff0c;纷纷抢滩AI手机市场…...

​数据结构之初始二叉树(3)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 二叉树的基本操作 通过上篇文章的学习&#xff0c;我们简单的了解了二叉树的相关操作。接下来就是有…...

egret 白鹭的编译太慢了 自己写了一个

用的swc 他会检测git的改变 const simpleGit require(simple-git); const fs require(fs); const path require(path); // 初始化 simple-git const swc require(swc/core); const baseDir D:\\project; const gameDir game\\module\\abcdefg; const gitDir D:\\projec…...

<数据集>pcb板缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;693张 标注数量(xml文件个数)&#xff1a;693 标注数量(txt文件个数)&#xff1a;693 标注类别数&#xff1a;6 标注类别名称&#xff1a;[missing_hole, mouse_bite, open_circuit, short, spurious_copper, spur…...

实验四:图像的锐化处理

目录 一、实验目的 二、实验原理 1. 拉普拉斯算子 2. Sobel算子 3. 模板大小对滤波的影响 三、实验内容 四、源程序和结果 (1) 主程序(matlab) (2) 函数GrayscaleFilter (3) 函数MatrixAbs 五、结果分析 1. 拉普拉斯滤波 2. Sobel滤波 3. 不同大小模板的滤波…...

【Linux】权限的管理和Linux上的一些工具

文章目录 权限管理chgrpchownumaskfile指令sudo指令 目录权限粘滞位Linux中的工具1.软件包管理器yum2.rzsz Linux开发工具vim 总结 权限管理 chgrp 功能&#xff1a;修改文件或目录的所属组 格式&#xff1a;chgrp [参数] 用户组名 文件名 常用选项&#xff1a;-R 递归修改文…...

ES6 字符串的新增方法(二十)

1. String.prototype.startsWith(searchString, position) 特性&#xff1a;判断字符串是否以指定的子字符串开始。 用法&#xff1a;检查字符串的开始部分。 const str "Hello World"; console.log(str.startsWith("Hello")); // 输出&#xff1a;true…...

如何将MP3或WAV文件解码成PCM文件

文章目录 概要整体架构流程技术细节 概要 本文介绍使用 FFmpeg&#xff0c;将MP3或WAV文件解码成PCM文件的方法。 整体架构流程 首先&#xff0c;使用的 FFmpeg 库要支持 MP3/WAV 解码功能&#xff0c;即编译的时候要加上&#xff08;编译 FFmpeg 库可以参考&#xff1a;Win…...

OpenAI 推出 GPT-4o mini,一种更小、更便宜的人工智能模型

OpenAI 最近推出了新型人工智能模型 GPT-4o mini&#xff0c;以其较小体积和低成本受到关注。这款模型在文本和视觉推理任务上性能优越&#xff0c;且比现有小型模型更快、更经济。GPT-4o mini 已向开发者和消费者发布&#xff0c;企业用户将在下周获得访问权限。 喜好儿网 在…...

Nacos 服务发现(订阅)源码分析(服务端)

前言&#xff1a; 前文我们分析了 Nacos 服务发现&#xff08;订阅&#xff09;的流程&#xff0c;从 Nacos Client 端的源码分析了服务发现的过程&#xff0c;服务发现最终还是要调用 Nacos Server 端来获取服务信息&#xff0c;缓存到客户端本地&#xff0c;并且会定时向 Na…...

DICOM CT\MR片子免费在线查看工具;python pydicom包加载查看;mayavi 3d查看

DICOM CT\MR片子免费在线查看工具 参考&#xff1a; https://zhuanlan.zhihu.com/p/668804209 dicom格式&#xff1a; DICOM&#xff08;Digital Imaging and Communications in Medicine&#xff09;是医学数字成像和通信的标准。它定义了医学图像&#xff08;如CT、MRI、X…...

VSCode远程连接Ubuntu/Linux

文章目录 前言SSH&#xff08;Secure Shell&#xff09;简介主要功能工作原理常见的 SSH 客户端和服务器 Ubuntu安装sshvscode远程插件安装远程插件开始远程连接 打开文件夹新建终端 总结 前言 在现代开发环境中&#xff0c;远程工作和跨平台开发变得越来越普遍。Visual Studi…...

【Nginx80端口被占用】80端口被System占用如何解决【已解决】

【Nginx80端口被占用】80端口被System占用如何解决【已解决】 01 问题背景 Nginx 版本 1.19及以上80端口被System占用&#xff0c;无法kill tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::80 :::* LISTEN 1/systemd 执行以下代码无效&…...

云计算的发展历程与边缘计算

云计算的发展历程 初期发展&#xff08;1960s-1990s&#xff09; 概念萌芽&#xff1a;云计算的概念可以追溯到1960年代&#xff0c;当时约翰麦卡锡&#xff08;John McCarthy&#xff09;提出了“计算将来可能成为一种公共设施”的想法。这个概念类似于现代的云计算&#xf…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用

阻止除自定义标签之外的所有标签 先输入一些标签测试&#xff0c;说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时&#xff08;如通过点击或键盘导航&…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...