昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
文章目录
- 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
- 数据集
- 创建数据集
- 数据预处理
- Tokenizer
- 模型构建
- 构建GPT2ForSummarization模型
- 动态学习率
- 模型训练
- 模型推理
- 总结
- 打卡
数据集
实验使用nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。
创建数据集
from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')from mindspore.dataset import TextFileDataset# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()
数据预处理
原始数据:
article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]
处理后的数据:
[CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization# pad to max_seq_length, only truncate the articletokenized = tokenizer(text=article, text_pair=summary,padding='max_length', truncation='only_first', max_length=max_seq_len)return tokenized['input_ids'], tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])# change column names to input_ids and labels for the following trainingdataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return dataset
Tokenizer
由于GPT2无中文tokenizer,使用BertTokenizer替代。
from mindnlp.transformers import BertTokenizer# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
模型构建
构建GPT2ForSummarization模型
from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def construct(self,input_ids = None,attention_mask = None,labels = None,):outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]# Flatten the tokensloss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return loss
动态学习率
from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateScheduleclass LinearWithWarmUp(LearningRateSchedule):"""Warmup-decay learning rate."""def __init__(self, learning_rate, num_warmup_steps, num_training_steps):super().__init__()self.learning_rate = learning_rateself.num_warmup_steps = num_warmup_stepsself.num_training_steps = num_training_stepsdef construct(self, global_step):if global_step < self.num_warmup_steps:return global_step / float(max(1, self.num_warmup_steps)) * self.learning_ratereturn ops.maximum(0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))) * self.learning_rate
模型训练
num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4num_training_steps = num_epochs * train_dataset.get_dataset_size()from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModelconfig = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallbackckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',epochs=1, keep_checkpoint_max=2)trainer = Trainer(network=model, train_dataset=train_dataset,epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1') # 开启混合精度trainer.run(tgt_columns="labels")
模型推理
def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])dataset = dataset.map(pad, 'article', ['input_ids'])dataset = dataset.batch(batch_size)return datasettest_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)output_text = tokenizer.decode(output_ids[0].tolist())print(output_text)i += 1if i == 1:break
总结
这一节介绍了在MindSpore中使用GPT2LMHeadModel实现文本摘要的实验。实验使用nlpcc2017摘要数据,并使用BertTokenizer进行中文分词,此外还使用了动态学习率来调整模型收敛速度。
打卡

相关文章:
昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要 文章目录 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要数据集创建数据集数据预处理Tokenizer 模型构建构建GPT2ForSummarization模型动态学习率 模型训练模型推理总结打卡 数据集 实验使用nlpcc2017摘要数…...
科研绘图系列:R语言circos图(circos plot)
介绍 Circos图是一种数据可视化工具,它以圆形布局展示数据,通常用于显示数据之间的关系和模式。这种图表特别适合于展示分层数据或网络关系。Circos图的一些关键特点包括: 圆形布局:数据被组织在一个或多个同心圆中,每个圆可以代表不同的数据维度或层次。扇区:每个圆被划…...
追踪Conda包的踪迹:深入探索依赖关系与管理
追踪Conda包的踪迹:深入探索依赖关系与管理 Conda作为Python和其他科学计算语言的包管理器,不仅提供了安装、更新和卸载包的功能,还有一个强大的包跟踪功能,帮助用户理解包之间的依赖关系和管理环境。本文将详细解释如何在Conda中…...
苹果电脑pdf合并软件 苹果电脑合并pdf 苹果电脑pdf怎么合并
在数字化办公日益普及的今天,pdf文件因其跨平台兼容性强、格式稳定等特点,已经成为工作、学习和生活中不可或缺的文件格式。然而,我们常常面临一个问题:如何将多个pdf文件合并为一个?这不仅有助于文件的整理和管理&…...
axios(ajax请求库)
json-server(搭建http服务) json-server用来快速搭建模拟的REST API的工具包 使用json-server 下载:npm install -g json-server创建数据库json文件:db.json开启服务:json-srver --watch db.json axios的基本使用 <!doctype html>…...
Ideal窗口中左右侧栏消失了
不知道大家在工作过程中有没有遇到过此类问题,不论是Maven项目还是Gradle项目,突然发现Ideal窗口右侧图标丢失了,同事今天突然说大象图标不见了,不知道怎样刷新gradle。 不要慌张,下面提供一些解决思路: 1…...
麦芒30全新绽放,中国电信勾勒出AI手机的新方向
高通总裁兼CEO克里斯蒂亚诺阿蒙曾在媒体采访时表示:2024年将成为全球AI手机元年,生成式AI正在“非常快”的进入手机。 把大模型装进手机,由此成了智能终端演进的新方向。三星、华为、OPPO、小米等品牌动作频频,纷纷抢滩AI手机市场…...
数据结构之初始二叉树(3)
找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 二叉树的基本操作 通过上篇文章的学习,我们简单的了解了二叉树的相关操作。接下来就是有…...
egret 白鹭的编译太慢了 自己写了一个
用的swc 他会检测git的改变 const simpleGit require(simple-git); const fs require(fs); const path require(path); // 初始化 simple-git const swc require(swc/core); const baseDir D:\\project; const gameDir game\\module\\abcdefg; const gitDir D:\\projec…...
<数据集>pcb板缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:693张 标注数量(xml文件个数):693 标注数量(txt文件个数):693 标注类别数:6 标注类别名称:[missing_hole, mouse_bite, open_circuit, short, spurious_copper, spur…...
实验四:图像的锐化处理
目录 一、实验目的 二、实验原理 1. 拉普拉斯算子 2. Sobel算子 3. 模板大小对滤波的影响 三、实验内容 四、源程序和结果 (1) 主程序(matlab) (2) 函数GrayscaleFilter (3) 函数MatrixAbs 五、结果分析 1. 拉普拉斯滤波 2. Sobel滤波 3. 不同大小模板的滤波…...
【Linux】权限的管理和Linux上的一些工具
文章目录 权限管理chgrpchownumaskfile指令sudo指令 目录权限粘滞位Linux中的工具1.软件包管理器yum2.rzsz Linux开发工具vim 总结 权限管理 chgrp 功能:修改文件或目录的所属组 格式:chgrp [参数] 用户组名 文件名 常用选项:-R 递归修改文…...
ES6 字符串的新增方法(二十)
1. String.prototype.startsWith(searchString, position) 特性:判断字符串是否以指定的子字符串开始。 用法:检查字符串的开始部分。 const str "Hello World"; console.log(str.startsWith("Hello")); // 输出:true…...
如何将MP3或WAV文件解码成PCM文件
文章目录 概要整体架构流程技术细节 概要 本文介绍使用 FFmpeg,将MP3或WAV文件解码成PCM文件的方法。 整体架构流程 首先,使用的 FFmpeg 库要支持 MP3/WAV 解码功能,即编译的时候要加上(编译 FFmpeg 库可以参考:Win…...
OpenAI 推出 GPT-4o mini,一种更小、更便宜的人工智能模型
OpenAI 最近推出了新型人工智能模型 GPT-4o mini,以其较小体积和低成本受到关注。这款模型在文本和视觉推理任务上性能优越,且比现有小型模型更快、更经济。GPT-4o mini 已向开发者和消费者发布,企业用户将在下周获得访问权限。 喜好儿网 在…...
Nacos 服务发现(订阅)源码分析(服务端)
前言: 前文我们分析了 Nacos 服务发现(订阅)的流程,从 Nacos Client 端的源码分析了服务发现的过程,服务发现最终还是要调用 Nacos Server 端来获取服务信息,缓存到客户端本地,并且会定时向 Na…...
DICOM CT\MR片子免费在线查看工具;python pydicom包加载查看;mayavi 3d查看
DICOM CT\MR片子免费在线查看工具 参考: https://zhuanlan.zhihu.com/p/668804209 dicom格式: DICOM(Digital Imaging and Communications in Medicine)是医学数字成像和通信的标准。它定义了医学图像(如CT、MRI、X…...
VSCode远程连接Ubuntu/Linux
文章目录 前言SSH(Secure Shell)简介主要功能工作原理常见的 SSH 客户端和服务器 Ubuntu安装sshvscode远程插件安装远程插件开始远程连接 打开文件夹新建终端 总结 前言 在现代开发环境中,远程工作和跨平台开发变得越来越普遍。Visual Studi…...
【Nginx80端口被占用】80端口被System占用如何解决【已解决】
【Nginx80端口被占用】80端口被System占用如何解决【已解决】 01 问题背景 Nginx 版本 1.19及以上80端口被System占用,无法kill tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::80 :::* LISTEN 1/systemd 执行以下代码无效&…...
云计算的发展历程与边缘计算
云计算的发展历程 初期发展(1960s-1990s) 概念萌芽:云计算的概念可以追溯到1960年代,当时约翰麦卡锡(John McCarthy)提出了“计算将来可能成为一种公共设施”的想法。这个概念类似于现代的云计算…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...
数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
