当前位置: 首页 > news >正文

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

文章目录

  • 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要
    • 数据集
      • 创建数据集
      • 数据预处理
      • Tokenizer
    • 模型构建
      • 构建GPT2ForSummarization模型
      • 动态学习率
    • 模型训练
    • 模型推理
    • 总结
    • 打卡

数据集

实验使用nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

创建数据集

from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')from mindspore.dataset import TextFileDataset# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()

数据预处理

原始数据:

article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]

处理后的数据:

[CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization# pad to max_seq_length, only truncate the articletokenized = tokenizer(text=article, text_pair=summary,padding='max_length', truncation='only_first', max_length=max_seq_len)return tokenized['input_ids'], tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])# change column names to input_ids and labels for the following trainingdataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return dataset

Tokenizer

由于GPT2无中文tokenizer,使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)

模型构建

构建GPT2ForSummarization模型

from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def construct(self,input_ids = None,attention_mask = None,labels = None,):outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]# Flatten the tokensloss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return loss

动态学习率

from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateScheduleclass LinearWithWarmUp(LearningRateSchedule):"""Warmup-decay learning rate."""def __init__(self, learning_rate, num_warmup_steps, num_training_steps):super().__init__()self.learning_rate = learning_rateself.num_warmup_steps = num_warmup_stepsself.num_training_steps = num_training_stepsdef construct(self, global_step):if global_step < self.num_warmup_steps:return global_step / float(max(1, self.num_warmup_steps)) * self.learning_ratereturn ops.maximum(0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))) * self.learning_rate

模型训练

num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4num_training_steps = num_epochs * train_dataset.get_dataset_size()from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModelconfig = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallbackckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',epochs=1, keep_checkpoint_max=2)trainer = Trainer(network=model, train_dataset=train_dataset,epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1')  # 开启混合精度trainer.run(tgt_columns="labels")

模型推理

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']dataset = dataset.map(read_map, 'text', ['article', 'summary'])dataset = dataset.map(pad, 'article', ['input_ids'])dataset = dataset.batch(batch_size)return datasettest_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)output_text = tokenizer.decode(output_ids[0].tolist())print(output_text)i += 1if i == 1:break

总结

这一节介绍了在MindSpore中使用GPT2LMHeadModel实现文本摘要的实验。实验使用nlpcc2017摘要数据,并使用BertTokenizer进行中文分词,此外还使用了动态学习率来调整模型收敛速度。

打卡

在这里插入图片描述

相关文章:

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要 文章目录 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要数据集创建数据集数据预处理Tokenizer 模型构建构建GPT2ForSummarization模型动态学习率 模型训练模型推理总结打卡 数据集 实验使用nlpcc2017摘要数…...

科研绘图系列:R语言circos图(circos plot)

介绍 Circos图是一种数据可视化工具,它以圆形布局展示数据,通常用于显示数据之间的关系和模式。这种图表特别适合于展示分层数据或网络关系。Circos图的一些关键特点包括: 圆形布局:数据被组织在一个或多个同心圆中,每个圆可以代表不同的数据维度或层次。扇区:每个圆被划…...

追踪Conda包的踪迹:深入探索依赖关系与管理

追踪Conda包的踪迹&#xff1a;深入探索依赖关系与管理 Conda作为Python和其他科学计算语言的包管理器&#xff0c;不仅提供了安装、更新和卸载包的功能&#xff0c;还有一个强大的包跟踪功能&#xff0c;帮助用户理解包之间的依赖关系和管理环境。本文将详细解释如何在Conda中…...

苹果电脑pdf合并软件 苹果电脑合并pdf 苹果电脑pdf怎么合并

在数字化办公日益普及的今天&#xff0c;pdf文件因其跨平台兼容性强、格式稳定等特点&#xff0c;已经成为工作、学习和生活中不可或缺的文件格式。然而&#xff0c;我们常常面临一个问题&#xff1a;如何将多个pdf文件合并为一个&#xff1f;这不仅有助于文件的整理和管理&…...

axios(ajax请求库)

json-server(搭建http服务) json-server用来快速搭建模拟的REST API的工具包 使用json-server 下载&#xff1a;npm install -g json-server创建数据库json文件&#xff1a;db.json开启服务&#xff1a;json-srver --watch db.json axios的基本使用 <!doctype html>…...

Ideal窗口中左右侧栏消失了

不知道大家在工作过程中有没有遇到过此类问题&#xff0c;不论是Maven项目还是Gradle项目&#xff0c;突然发现Ideal窗口右侧图标丢失了&#xff0c;同事今天突然说大象图标不见了&#xff0c;不知道怎样刷新gradle。 不要慌张&#xff0c;下面提供一些解决思路&#xff1a; 1…...

麦芒30全新绽放,中国电信勾勒出AI手机的新方向

高通总裁兼CEO克里斯蒂亚诺阿蒙曾在媒体采访时表示&#xff1a;2024年将成为全球AI手机元年&#xff0c;生成式AI正在“非常快”的进入手机。 把大模型装进手机&#xff0c;由此成了智能终端演进的新方向。三星、华为、OPPO、小米等品牌动作频频&#xff0c;纷纷抢滩AI手机市场…...

​数据结构之初始二叉树(3)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 二叉树的基本操作 通过上篇文章的学习&#xff0c;我们简单的了解了二叉树的相关操作。接下来就是有…...

egret 白鹭的编译太慢了 自己写了一个

用的swc 他会检测git的改变 const simpleGit require(simple-git); const fs require(fs); const path require(path); // 初始化 simple-git const swc require(swc/core); const baseDir D:\\project; const gameDir game\\module\\abcdefg; const gitDir D:\\projec…...

<数据集>pcb板缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;693张 标注数量(xml文件个数)&#xff1a;693 标注数量(txt文件个数)&#xff1a;693 标注类别数&#xff1a;6 标注类别名称&#xff1a;[missing_hole, mouse_bite, open_circuit, short, spurious_copper, spur…...

实验四:图像的锐化处理

目录 一、实验目的 二、实验原理 1. 拉普拉斯算子 2. Sobel算子 3. 模板大小对滤波的影响 三、实验内容 四、源程序和结果 (1) 主程序(matlab) (2) 函数GrayscaleFilter (3) 函数MatrixAbs 五、结果分析 1. 拉普拉斯滤波 2. Sobel滤波 3. 不同大小模板的滤波…...

【Linux】权限的管理和Linux上的一些工具

文章目录 权限管理chgrpchownumaskfile指令sudo指令 目录权限粘滞位Linux中的工具1.软件包管理器yum2.rzsz Linux开发工具vim 总结 权限管理 chgrp 功能&#xff1a;修改文件或目录的所属组 格式&#xff1a;chgrp [参数] 用户组名 文件名 常用选项&#xff1a;-R 递归修改文…...

ES6 字符串的新增方法(二十)

1. String.prototype.startsWith(searchString, position) 特性&#xff1a;判断字符串是否以指定的子字符串开始。 用法&#xff1a;检查字符串的开始部分。 const str "Hello World"; console.log(str.startsWith("Hello")); // 输出&#xff1a;true…...

如何将MP3或WAV文件解码成PCM文件

文章目录 概要整体架构流程技术细节 概要 本文介绍使用 FFmpeg&#xff0c;将MP3或WAV文件解码成PCM文件的方法。 整体架构流程 首先&#xff0c;使用的 FFmpeg 库要支持 MP3/WAV 解码功能&#xff0c;即编译的时候要加上&#xff08;编译 FFmpeg 库可以参考&#xff1a;Win…...

OpenAI 推出 GPT-4o mini,一种更小、更便宜的人工智能模型

OpenAI 最近推出了新型人工智能模型 GPT-4o mini&#xff0c;以其较小体积和低成本受到关注。这款模型在文本和视觉推理任务上性能优越&#xff0c;且比现有小型模型更快、更经济。GPT-4o mini 已向开发者和消费者发布&#xff0c;企业用户将在下周获得访问权限。 喜好儿网 在…...

Nacos 服务发现(订阅)源码分析(服务端)

前言&#xff1a; 前文我们分析了 Nacos 服务发现&#xff08;订阅&#xff09;的流程&#xff0c;从 Nacos Client 端的源码分析了服务发现的过程&#xff0c;服务发现最终还是要调用 Nacos Server 端来获取服务信息&#xff0c;缓存到客户端本地&#xff0c;并且会定时向 Na…...

DICOM CT\MR片子免费在线查看工具;python pydicom包加载查看;mayavi 3d查看

DICOM CT\MR片子免费在线查看工具 参考&#xff1a; https://zhuanlan.zhihu.com/p/668804209 dicom格式&#xff1a; DICOM&#xff08;Digital Imaging and Communications in Medicine&#xff09;是医学数字成像和通信的标准。它定义了医学图像&#xff08;如CT、MRI、X…...

VSCode远程连接Ubuntu/Linux

文章目录 前言SSH&#xff08;Secure Shell&#xff09;简介主要功能工作原理常见的 SSH 客户端和服务器 Ubuntu安装sshvscode远程插件安装远程插件开始远程连接 打开文件夹新建终端 总结 前言 在现代开发环境中&#xff0c;远程工作和跨平台开发变得越来越普遍。Visual Studi…...

【Nginx80端口被占用】80端口被System占用如何解决【已解决】

【Nginx80端口被占用】80端口被System占用如何解决【已解决】 01 问题背景 Nginx 版本 1.19及以上80端口被System占用&#xff0c;无法kill tcp6 0 0 :::111 :::* LISTEN 1/systemd tcp6 0 0 :::80 :::* LISTEN 1/systemd 执行以下代码无效&…...

云计算的发展历程与边缘计算

云计算的发展历程 初期发展&#xff08;1960s-1990s&#xff09; 概念萌芽&#xff1a;云计算的概念可以追溯到1960年代&#xff0c;当时约翰麦卡锡&#xff08;John McCarthy&#xff09;提出了“计算将来可能成为一种公共设施”的想法。这个概念类似于现代的云计算&#xf…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

Linux安全加固:从攻防视角构建系统免疫

Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...