当前位置: 首页 > news >正文

AI学习指南机器学习篇-t-SNE模型应用与Python实践

AI学习指南机器学习篇-t-SNE模型应用与Python实践

在机器学习领域,数据的可视化是非常重要的,因为它可以帮助我们更好地理解数据的结构和特征。而t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非常强大的降维和可视化技术,它可以将高维数据映射到低维空间,并在保持数据结构的同时展现出数据的内在特征。在本篇博客中,我们将介绍如何使用Python中的相关库来实现t-SNE算法,包括数据准备、模型训练和降维可视化。

t-SNE简介

t-SNE是由Geoffrey Hinton和Laurens van der Maaten在2008年提出的一种非线性降维技术,它能够将高维数据映射到低维空间。与其他降维技术(如PCA)不同的是,t-SNE在保持数据结构的同时,更注重于保持数据点之间的局部相似性。这使得t-SNE在可视化高维数据时非常有效,能够展现数据的内在结构和特征。

t-SNE模型应用与Python实践

在Python中,我们可以使用一些机器学习的库来实现t-SNE算法,比如Scikit-learn和TensorFlow等。下面我们将介绍如何使用这些库来进行数据准备、模型训练和降维可视化。

数据准备

首先,我们需要准备一个数据集来进行t-SNE算法的实践。在这里,我们将使用Scikit-learn库中自带的iris数据集作为示例。iris数据集包含了150个样本,其中包括了鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)。接下来,我们将使用Python代码加载并可视化这个数据集。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets# 加载iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 可视化数据集
plt.scatter(X[:, 0], X[:, 1], c=y, cmap="viridis")
plt.xlabel("Sepal length")
plt.ylabel("Sepal width")
plt.show()

运行以上代码,我们可以得到一个散点图,展示了iris数据集中花萼长度和花萼宽度的分布情况。接下来,我们将使用t-SNE算法来将这个高维数据映射到二维空间,并对其进行可视化。

模型训练

在这里,我们将使用Scikit-learn库中的t-SNE算法来对iris数据集进行降维。代码如下:

from sklearn.manifold import TSNE# 使用t-SNE算法进行降维
tsne = TSNE(n_components=2, random_state=0)
X_tsne = tsne.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap="viridis")
plt.xlabel("t-SNE feature 1")
plt.ylabel("t-SNE feature 2")
plt.show()

运行以上代码,我们可以得到一个二维散点图,展示了通过t-SNE算法降维后的iris数据集。从图中我们可以看到,不同类别的花在t-SNE映射后被很好地区分开来,这表明t-SNE成功地保持了数据的结构和特征。

降维可视化

在实际应用中,我们通常希望能够将降维后的数据以更直观的方式展现出来,比如通过可视化图表或者动态交互式图表。在这里,我们将使用matplotlib库和seaborn库来展示降维后的数据。代码如下:

import seaborn as sns# 将降维后的数据添加到DataFrame中
df = pd.DataFrame({"t-SNE feature 1": X_tsne[:, 0], "t-SNE feature 2": X_tsne[:, 1], "class": y})
df["class"] = df["class"].astype("category")# 绘制t-SNE可视化图表
sns.scatterplot(data=df, x="t-SNE feature 1", y="t-SNE feature 2", hue="class", palette="viridis")
plt.show()

运行以上代码,我们可以得到一个带有类别颜色的t-SNE可视化图表。从图表中我们可以更清晰地看到数据之间的分布情况,以及不同类别的花在降维后的空间中的分布情况。

总结

在本篇博客中,我们介绍了如何使用Python中的Scikit-learn库来实现t-SNE算法,并对其进行数据准备、模型训练和降维可视化。通过实际的数据集和代码示例,我们展示了t-SNE在降维和可视化高维数据方面的强大能力。希望本篇博客可以帮助读者更好地理解t-SNE算法,并在实际应用中更加灵活地运用它。

通过本文的介绍,读者可以了解到t-SNE算法的原理和应用,以及如何使用Python中的相关库来实现t-SNE算法。同时,通过实际的数据集和代码示例,读者也可以更加直观地感受到t-SNE在降维和可视化高维数据方面的强大能力。希望本篇博客能够帮助读者更好地掌握t-SNE算法,并在实际应用中更加灵活地运用它。

相关文章:

AI学习指南机器学习篇-t-SNE模型应用与Python实践

AI学习指南机器学习篇-t-SNE模型应用与Python实践 在机器学习领域,数据的可视化是非常重要的,因为它可以帮助我们更好地理解数据的结构和特征。而t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非常强大的降维和可视…...

小试牛刀-Telebot区块链游戏机器人

目录 1.编写目的 2.实现功能 2.1 Wallet功能 2.2 游戏功能 2.3 提出功能 2.4 辅助功能 3.功能实现详解 3.1 wallet功能 3.2 游戏功能 3.3 提出功能 3.4 辅助功能 4.测试视频 Welcome to Code Blocks blog 本篇文章主要介绍了 [Telebot区块链游戏机器人] ❤博主…...

使用github actions构建多平台electron应用

1. 创建electron项目 使用pnpm创建项目 pnpm create quick-start/electron 2. 修改electron-builder.yml文件 修改mac的target mac:target:- target: dmgarch: universal 3. 添加workflow 创建 .github/workflows/main.yml 文件 name: Build/release Electron appon:work…...

java通过pdf-box插件完成对pdf文件中图片/文字的替换

需要引入的Maven依赖: <!-- pdf替换图片 --><dependency><groupId>e-iceblue</groupId><artifactId>spire.pdf.free</artifactId><version>5.1.0</version></dependency> java代码: public AjaxResult replacepd…...

鸿蒙 next 5.0 版本页面跳转传参 接受参数 ,,接受的时候 要先定义接受参数的类型, 代码可以直接CV使用 [教程]

1, 先看效果 2, 先准备好两个页面 index 页面 传递参数 import router from ohos.routerEntry Component struct Index {Statelist: string[] [星期一, 星期二,星期三, 星期四,星期五]StateactiveIndex: number 0build() {Row() {Column({ space: 10 }) {ForEach(this.list,…...

【electron6】浏览器实时播放PCM数据

pcm介绍&#xff1a;PCM&#xff08;Puls Code Modulation&#xff09;全称脉码调制录音&#xff0c;PCM录音就是将声音的模拟信号表示成0,1标识的数字信号&#xff0c;未经任何编码和压缩处理&#xff0c;所以可以认为PCM是未经压缩的音频原始格式。PCM格式文件中不包含头部信…...

嵌入式C/C++、FreeRTOS、STM32F407VGT6和TCP:智能家居安防系统的全流程介绍(代码示例)

1. 项目概述 随着物联网技术的快速发展,智能家居安防系统越来越受到人们的重视。本文介绍了一种基于STM32单片机的嵌入式安防中控系统的设计与实现方案。该系统集成了多种传感器,实现了实时监控、报警和远程控制等功能,为用户提供了一个安全、可靠的家居安防解决方案。 1.1 系…...

【Django】django自带后台管理系统样式错乱,uwsgi启动css格式消失的问题

正常情况&#xff1a; ERROR&#xff1a;&#xff08;css、js文件加载失败&#xff09; 问题&#xff1a;CSS加载的样式没有了&#xff0c;原因&#xff1a;使用了django自带的admin&#xff0c;在使用 python manage.py runserver启动 的时候&#xff0c;可以加载到admin的文…...

解决npm install(‘proxy‘ config is set properly. See: ‘npm help config‘)失败问题

摘要 重装电脑系统后&#xff0c;使用npm install初始化项目依赖失败了&#xff0c;错误提示&#xff1a;‘proxy’ config is set properly…&#xff0c;具体的错误提示如下图所示&#xff1a; 解决方案 经过报错信息查询解决办法&#xff0c;最终找到了两个比较好的方案&a…...

汽车及零部件研发项目管理系统:一汽东机工选择奥博思 PowerProject 提升研发项目管理效率

在汽车行业中&#xff0c;汽车零部件的研发和生产是一个关键的环节。随着汽车市场的不断扩大和消费者需求的不断增加&#xff0c;汽车零部件项目管理的重要性日益凸显。通过有效的项目管理方法及利用先进的数字项目管理系统&#xff0c;可以大幅提高项目的成功率和顺利度&#…...

Keil开发IDE

Keil开发IDE 简述Keil C51Keil ARMMDK DFP安装 简述 Keil公司是一家业界领先的微控制器&#xff08;MCU&#xff09;软件开发工具的独立供应商。Keil公司由两家私人公司联合运营&#xff0c;分别是德国慕尼黑的Keil Elektronik GmbH和美国德克萨斯的Keil Software Inc。Keil公…...

数据结构与算法05堆|建堆|Top-k问题

一、堆 1、堆的介绍 堆&#xff08;heap&#xff09;是一种满足特定的条件的完全二叉树&#xff0c;主要可以分为大根堆和小根堆。 大根堆&#xff08;max heap&#xff09;&#xff1a;任意节点的值大于等于其子节点的值。小根堆&#xff08;min heap&#xff09;&#xff1…...

【精简版】jQuery 中的 Ajax 详解

目录 一、概念 二、jQuery 发送 GET 请求 三、jQuery 发送 POST 请求 四、$.ajax() 方法 1、含义 2、settings 选项 ① type 属性 ② async 属性 ③ headers 属性 ④ contentType 属性 ⑤ processData 属性 ⑥ data 属性 ⑦ timeout 属性 ⑧ beforeSend(jqXHR) 方…...

win10删除鼠标右键选项

鼠标右键菜单时&#xff0c;发现里面的选项特别多&#xff0c;找一下属性&#xff0c;半天找不到。删除一些不常用的选项&#xff0c;让右键菜单变得干净整洁。 1、按下键盘上的“winR”组合按键&#xff0c;调出“运行”对话框&#xff0c;输入“regedit”命令&#xff0c;点击…...

分层评估的艺术:sklearn中的策略与实践

分层评估的艺术&#xff1a;sklearn中的策略与实践 在机器学习中&#xff0c;评估模型性能是一个至关重要的步骤。然而&#xff0c;对于不平衡的数据集&#xff0c;传统的评估方法可能会产生误导性的结果。分层评估&#xff08;Stratified Evaluation&#xff09;是一种确保评…...

排序系列 之 快速排序

&#xff01;&#xff01;&#xff01;排序仅针对于数组哦本次排序是按照升序来的哦代码后边有图解哦 介绍 快速排序英文名为Quick Sort 基本思路 快速排序采用的是分治思想&#xff0c;即在一个无序的序列中选取一个任意的基准元素base&#xff0c;利用base将待排序的序列分…...

【银河麒麟服务器操作系统】java进程oom现象分析及处理建议

了解银河麒麟操作系统更多全新产品&#xff0c;请点击访问麒麟软件产品专区&#xff1a;https://product.kylinos.cn 现象描述 某服务器系统升级内核至4.19.90-25.22.v2101版本后仍会触发oom导致java进程被kill。 现象分析 oom现象分析 系统messages日志分析&#xff0c;故…...

Redis的AOF持久化策略(AOF的工作流程、AOF的重写流程,操作演示、注意事项等)

文章目录 缓冲AOF 策略(append only file)AOF 的工作流程AOF 缓冲区策略AOF 的重写机制重写完的AOF文件为什么可以变小&#xff1f;AOF 重写流程 缓冲AOF 策略(append only file) AOF 的核心思路是 “实时备份“&#xff0c;只要我添加了新的数据或者更新了新的数据&#xff0…...

共享模型之无锁

一、问题提出 1.1 需求描述 有如下的需求&#xff0c;需要保证 account.withdraw() 取款方法的线程安全&#xff0c;代码如下&#xff1a; interface Account {// 获取余额Integer getBalance();// 取款void withdraw(Integer amount);/*** 方法内会启动 1000 个线程&#xf…...

下载安装VSCode并添加插件作为仓颉编程入门编辑器

VSCode下载地址&#xff1a;下载 Visual Studio Code - Mac、Linux、Windows 插件下载&#xff1a;GitCode - 全球开发者的开源社区,开源代码托管平台 仓颉社区中下载解压 cangjie.vsix 插件 打开VSCode 按 Ctrl Shift X 弹出下图 按照上图步骤依次点击选中我们下…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...