OpenCV 轮廓检测
在 OpenCV 中,轮廓检测是一种用于查找图像中具有相似颜色或强度的连通像素组的技术,这些像素组通常代表了图像中的物体边缘。轮廓可以用来识别和分割图像中的物体,是计算机视觉应用中的一个重要步骤,如目标识别、形状分析等。
轮廓检测的基本步骤包括:
预处理:
将彩色图像转换为灰度图像(如果图像不是灰度的)。
应用阈值处理或边缘检测算法(如Canny边缘检测)将图像转换为二值图像,以便更清晰地突出物体和背景之间的差异。
轮廓发现:
使用cv2.findContours()函数来找到图像中的所有轮廓。此函数需要一个二值图像作为输入。
函数的两个主要参数是轮廓检索模式(mode)和轮廓近似方法(method)。
轮廓近似:
cv2.findContours()函数返回轮廓的列表,以及它们之间的层次关系(如果检索模式允许的话)。
每个轮廓是一个由点构成的Numpy数组,这些点定义了轮廓的边界。
轮廓绘制:
使用cv2.drawContours()函数可以在原图上绘制出找到的轮廓,这对于可视化轮廓很有帮助。
以下是一个基本的轮廓检测的 Python 代码示例:
# -*- coding: utf-8 -*-
# @Author : 小红牛
# 微信公众号:WdPython
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_your_image.jpg')# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用二值化
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 找到轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 绘制轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)# 显示结果
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
在上述代码中,cv2.RETR_TREE表示要检索所有轮廓并构建完整的层次结构,而cv2.CHAIN_APPROX_SIMPLE则用于压缩水平、垂直和对角方向上的连续点,仅保留端点。
完毕!!感谢您的收看
----------★★历史博文集合★★----------
我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame
相关文章:
OpenCV 轮廓检测
在 OpenCV 中,轮廓检测是一种用于查找图像中具有相似颜色或强度的连通像素组的技术,这些像素组通常代表了图像中的物体边缘。轮廓可以用来识别和分割图像中的物体,是计算机视觉应用中的一个重要步骤,如目标识别、形状分析等。 轮…...
ubuntu源码安装Odoo
序言:时间是我们最宝贵的财富,珍惜手上的每个时分 Odoo具有非常多的安装方式,除了我最爱用的 apt-get install,我们还可以使用git拉取Odoo源码进行安装。 本次示例于ubuntu20.04 Desktop上进行操作,理论上在ubuntu14.04之后都可以用此操作。 …...
大鲸鱼docker-compose单机容器集群编排工具
目录 一、Docker-compose 概述 二、Docker-compose简介 三、YML文件格式及编写注意事项 1.yml文件是什么 2.yml问价使用注意事项 3.yml文件的基本数据结构 四、Docker-compose 配置 1.Docker-Compose 配置常用字段 2.Docker Compose常用命令 3.使用Docker-compose创建…...
Dify中的高质量索引模式实现过程
思考在什么情况下会使用到高质量索引模式呢?第1种情况是在知识库中上传文档,文档被拆分为段落后需要进行编码(增加);第2种情况是在召回测试的时候,需要对query进行编码(查询);第3种情况是当文档中的段落增加和更新时需要进行编码(增加和更新)。索引模式是针对知识库…...
GO:Socket编程
目录 一、TCP/IP协议族和四层模型概述 1.1 互联网协议族(TCP/IP) 1.2 TCP/IP四层模型 1. 网络访问层(Network Access Layer) 2. 网络层(Internet Layer) 3. 传输层(Transport Layer&#…...
wls2下的centos使用桥接模式连接宿主机网络独立静态ip
前提:wsl2已安装,可正常更新 1.在控制面板中,打开开启或关闭windows功能,将里面的 Hyper-V功能打开,此处涉及重启 2. 按一下win键,输入hy,上面可以看到Hyper-V Manager,点进去 3.选择右边的 Vi…...
R语言实现神经网络ANN
# 常用激活函数 # 自定义Sigmoid函数 sigmod <- function(x){return(1/(1exp(-x))) } # 绘制Sigmoid曲线 x <- seq(-10,10,length.out 100) plot(x,sigmod(x),type l,col blue,lwd 2,xlab NA,ylab NA,main Sigmoid函数曲线)# 自定义Tanh函数 tanh <- function(…...
实战:shell脚本练习
高效编写Bash脚本的技巧 总结了10个实用技巧,帮助提高脚本的效率和可靠性,具体包括: 多写注释:在脚本中添加注释,以帮助理解脚本的不同部分。 当运行失败时使脚本退出:使用set -o errexit或set -e&#x…...
常见排序算法总结
文章目录 比较排序冒泡排序选择排序插入排序归并排序快速排序堆排序希尔排序 非比较排序(桶排序)计数排序基数排序 比较排序 冒泡排序 嵌套循环,每次内层循环执行时,数组的每两个元素交换,将一个最大/小的数排到数组…...
网页HTTP协议 get请求和post请求区别?(HTTP中Get、Post、Put与Delete的区别)(HTTP请求方法、HTTP请求方式、HTTP方法)
文章目录 设计GET、POST、DELETE 等多种请求方法的原因1. 符合语义化设计2. 允许服务器对不同的请求方法进行优化处理3. 提高数据传输的安全性4. 遵循现有的网络架构5. 提高网络通信的效率6. 支持 RESTful API 设计 设计GET、POST、DELETE 等多种请求方法的原因 后端之所以要分…...
攻防世界 re新手模式
Reversing-x64Elf-100 64位ida打开 看if语句,根据i的不同,选择不同的数组,后面的2*i/3选择数组中的某一个元素,我们输入的是a1 直接逆向得到就行 二维字符数组写法:前一个是代表有几个字符串,后一个是每…...
Ajax是什么?如何在HTML5中使用Ajax?
Ajax是什么,它如何工作? Ajax是什么 Ajax,全称Asynchronous Javascript And XML(异步JavaScript和XML),是一种创建交互式网页应用的网页开发技术。它允许网页在不重新加载整个页面的情况下,与…...
Python+Flask+MySQL/Sqlite的个人博客系统(前台+后端管理)【附源码,运行简单】
PythonFlaskMySQL/Sqlite的个人博客系统(前台后端管理)【附源码,运行简单】 总览 1、《个人博客系统》1.1 方案设计说明书设计目标工具列表 2、详细设计2.1 管理员登录2.2 程序主页面2.3 笔记新增界面2.4 文章新增界面2.5 文章/笔记管理界面2…...
【Android性能优化】Android CPU占用率检测原理和优化方向
【Android性能优化】Android CPU占用率检测原理和优化方向 CPU相关知识 CPU占用的基本计算公式 (1 - 空闲态运行时间/总运行时间) * 100% Hz、Tick、Jiffies: Hz:Linux核心每隔固定周期会发出timer interrupt (IRQ 0),HZ是用来定义每一秒有…...
AWS Certified Developer Associate备考笔记
AWS Certified Developer Associate备考笔记 缓慢更新中,如果你也正在关注该考试,请点赞后评论感兴趣的章节,可加快我的更新速度 😃 文章目录 AWS Certified Developer Associate备考笔记一、IAM二、EC2三、EC2 Instance Storage…...
数据质量8个衡量标准
在数据驱动的时代,数据质量对于企业的决策和业务运营至关重要。为了确保数据的有效性和可靠性,我们需要根据一些关键要素来衡量数据的质量。本文将介绍数据质量的8个衡量标准,包括准确性、精确性、真实性、及时性、即时性、完整性、全面性和关…...
Redis 跳跃列表与紧凑列表
Redis 跳跃列表(Skip List) 跳跃列表是一种高效的数据结构,它结合了有序数组和链表的优点,能够在 O(log n) 时间内进行插入、删除和查找操作。Redis 使用跳跃列表来实现有序集合(sorted set)的底层数据结构…...
达梦数据库的系统视图v$arch_status
达梦数据库的系统视图v$arch_status 在达梦数据库(DM Database)中,V$ARCH_STATUS 是一个动态性能视图(Dynamic Performance View),用于显示归档日志的状态信息。这个视图可以帮助数据库管理员监控和管理数…...
【Rust光年纪】Rust 中常用的数据库客户端库:核心功能与使用场景
探秘 Rust 语言下的多种数据库客户端库:从安装到实际应用 前言 在现代的软件开发中,数据库是不可或缺的一部分。为了与数据库进行交互,开发人员需要使用各种数据库客户端来执行操作、构建查询等。本文将介绍一些用于 Rust 语言的常见数据库…...
网络安全防御【防火墙双机热备带宽管理综合实验】
目录 一、实验拓扑图 二、实验要求 三、实验思路: 四、实验步骤: 1、FW3的网络相关配置: 2、FW1的新增配置: 3、交换机LSW6(总公司)的新增配置: 4、双机热备技术配置(双机热…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
