当前位置: 首页 > news >正文

【线性代数】矩阵变换

一些特殊的矩阵

一,对角矩阵

1,什么是对角矩阵

表示将矩阵进行伸缩(反射)变换,仅沿坐标轴方向伸缩(反射)变换。

2,对角矩阵可分解为多个F1矩阵,如下:

二,剪切矩阵

1,什么是剪切矩阵

2,剪切矩阵的几何意义

3,剪切矩阵的特点

变换前后面积不变

三,正交矩阵

1,什么是正交矩阵?

2,正交矩阵的特点

(1)是方阵

(2)每个列向量都是单位矩阵

(3)每对列向量都正交

(4)正交矩阵的转置等于它的逆

3,正交矩阵的几何意义

只有旋转,无剪切,无伸缩,无反射

如下图所示,矩阵A表示绕X轴旋转60°,矩阵B表示绕Z轴旋转45°,C表示先按X轴旋转60°再按Z轴旋转45°,顺序不能颠倒。

若颠倒顺序,先绕Z轴旋转,再按X轴旋转,则:

四,投影矩阵

1,什么是投影矩阵?

将高维的变换到低维

谱分解

作用对象是对称矩阵,对称矩阵的特征向量正交。

本质:将一个复杂的变换分解为:旋转-伸缩-逆旋转

Q为单位特征向量组成的矩阵,即e1,e2,e3都是单位特征向量,\Lambda为特征值组成的对角矩阵。

过程解释(以2维为例):原对称矩阵S具有2个特征向量,且特征向量都正交,Q^{T}矩阵实现了将特征基 e1,e2旋转到原来的基 (1,0)(0,1)的过程,然后进行\Lambda伸缩变换,即沿特征基的方向进行伸缩变换,最后再乘Q将特征基旋转回原来的位置。

谱分解的特殊点:

(1)对称矩阵的特征向量都正交,原来的基也是正交的,则仅进行正交变换(旋转)即可实现将特征基旋转为原来的基。

奇异值分解

奇异值分解与谱分解的区别只有,谱分解是旋转---伸缩---逆旋转,而奇异值分解是旋转---伸缩(可能有维度消除或维度扩充)---再旋转。奇异值分解的第二次旋转不是第一次旋转的逆旋转。

1,图+公式推导

待分解矩阵的变换如图,改变换将相互正交的向量v_{1}v_{2} 变换到仍然相互正交的向量u_{1}u_{2},伸缩量为\sigma _{1}\sigma _{2}。设V=[v_{1},v_{2}]U=[u_{1},u_{2}]\Sigma =\begin{bmatrix} \sigma _{1} &0 \\ 0 &\sigma _{2} \end{bmatrix}

MV=U\Sigma,即 M=U\Sigma V^{T}

即         M^{T}M=V\Sigma U^{T}U\Sigma V^{T}=V\Sigma ^{2}V^{T}

即         M^{T}MV=V\Sigma ^{2}

所以M^{T}M的特征向量为V,特征值为\Sigma ^{2}=\begin{bmatrix} \sigma _{1}^{2} &0 \\ 0 & \sigma _{2}^{2} \end{bmatrix}

同理MM^{T}的特征向量为U,特征值为\Sigma ^{2}=\begin{bmatrix} \sigma _{1}^{2} &0 \\ 0 & \sigma _{2}^{2} \end{bmatrix}

综上,奇异值分解中M=U\Sigma V^{T}UMM^{T}的特征向量,VM^{T}M的特征向量。\SigmaMM^{T}M^{T}M特征值的平方根。

V为右奇异向量,U为左奇异向量。

2,几何解释

相关文章:

【线性代数】矩阵变换

一些特殊的矩阵 一,对角矩阵 1,什么是对角矩阵 表示将矩阵进行伸缩(反射)变换,仅沿坐标轴方向伸缩(反射)变换。 2,对角矩阵可分解为多个F1矩阵,如下: 二&a…...

聚焦智慧出行,TDengine 与路特斯科技再度携手

在全球汽车行业向电动化和智能化转型的过程中,智能驾驶技术正迅速成为行业的焦点。随着消费者对出行效率、安全性和便利性的需求不断提升,汽车制造商们需要在全球范围内实现低延迟、高质量的数据传输和处理,以提升用户体验。在此背景下&#…...

虚拟机迁移报错:虚拟机版本与主机“x.x.x.x”的版本不兼容

1.虚拟机在VCenter上从一个ESXi迁移到另一个ESXi上时报错:虚拟机版本与主机“x.x.x.x”的版本不兼容。 2.例如从10.0.128.13的ESXi上迁移到10.0.128.11的ESXi上。点击10.0.128.10上的任意一台虚拟机,查看虚拟机版本。 3.确认要迁移的虚拟机磁盘所在位…...

【教程】vscode添加powershell7终端

win10自带的 powershell 是1.0版本的,太老了,更换为powershell7后,在 vscode 的集成终端中没有显示本篇教程记录在vscode添加powershell7终端的过程 打开vscode终端配置 然后来到这个页面进行设置 查看 powershell7 的安装位置&#xff…...

如何乘上第四次工业革命的大船

如何乘上第四次工业革命的大船 第四次工业革命通常被认为是信息技术和数字化时代的到来,但具体影响哪些产业,以及它将如何演变和展开,仍然是一个广泛讨论的话题。 然而,已经可以看到一些领域可能受到第四次工业革命的深远影响,例如人工智能、物联网、大数据、生物技术、可…...

RKNN执行bash ./build-linux_RK3566_RK3568.sh 报错

目录 报错信息: 原因分析: 解决办法: 报错信息: CMake Error at /usr/share/cmake-3.22/Modules/CMakeDetermineCCompiler.cmake:49 (message): Could not find compiler set in environment variable CC: aarch64-linux-gnu-gcc. Call Stack (most recent call fir…...

Linux常用命令整理

本文将分享一些常用的Linux命令。根据功能的不同,大概分为以下几个方面,一是文件相关命令,二是进程相关命令,三是网络相关命令,四是磁盘相关命令,五是用户管理相关命令,六是系统命令。 1. 文件…...

python 闭包、装饰器

一、闭包: 1. 外部函数嵌套内部函数 2. 外部函数返回内部函数 3.内部函数可以访问外部函数局部变量 闭包(Closure)是指在一个函数内部定义的函数,并且内部函数可以访问外部函数的局部变量,即使外部函数已经执行…...

[pycharm]解决pycharm运行程序出现卡住scanning files to index索引的问题

有时候会出现索引问题,显示scanning files to index 解决方法: in pycharm, go to the "File" on the left top, then select "invalidate caches/restart...", and press "invalidate and restart". 然后等它自己重启…...

python每日学习11:numpy库的用法(下)

python每日学习11:numpy库的用法(下) 数组的拼接 名方法称说明concatenate连接沿现有轴的数组序列hstack水平堆叠序列中的数组(列方向)vstack竖直堆叠序列中的数组(行方向)concatenate函数用于沿指定轴连接相同形状的两…...

【Emacs有什么优点,用Emacs写程序真的比IDE更方便吗?】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...

6、基于Fabirc 2.X 通用电子存证系统部署

evidence 将GOPATH设置为/root/go,拉取项目: cd $GOPATH/src && git clone https://gitee.com/henan-minghua_0/evidence.git 在/etc/hosts中添加: 127.0.0.1 orderer.example.com 127.0.0.1 peer0.org1.example.com 127.0.0.1 peer1.org…...

Linux Vim 由浅入深的教程

引言 原文链接 Vim是Linux系统中非常强大的文本编辑器,因其强大的功能和灵活的操作而受到广泛使用。尤其是在服务器管理和开发环境中,Vim几乎是必备工具。本教程将以CentOS 7为例,详细讲解Vim的安装、基本操作以及一些高级技巧,…...

MIT6.824(6.5840) Lab1笔记+源码

文章目录 其他人的内容,笔记写的更好,思路可以去看他们的MapReduceworkermapreduce coordinatorrpc纠错 源码worker.gocoordinator.gorpc.go 原本有可借鉴的部分 mrsequential.go,多看几遍源码 其他人的内容,笔记写的更好&#xf…...

【目录】8051汇编与C语言系列教程

8051汇编与C语言系列教程 作者将狼才鲸创建日期2024-07-23 CSDN文章地址:【目录】8051汇编与C语言系列教程本Gitee仓库原始地址:才鲸嵌入式/8051_c51_单片机从汇编到C_从Boot到应用实践教程 一、本教程目录 序号教程名称简述教程链接1点亮LCD灯通过IO…...

群管机器人官网源码

一款非常好看的群管机器人html官网源码 搭建教程: 域名解析绑定 源码文件上传解压 访问域名即可 演示图片: 群管机器人官网源码下载:客户端下载 - 红客网络编程与渗透技术 原文链接: 群管机器人官网源码...

整合EasyExcel实现灵活的导入导出java

引入pom依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId></dependency>实现功能 结合Vue前端&#xff0c;实现浏览器页面直接导出日志文件实现文件的灵活导入文件导出 3. 实体类 实体类里有自定义转…...

springSecurity学习之springSecurity web如何取得用户信息

web如何取得用户信息 之前说过SecurityContextHolder默认使用的是ThreadLocal来进行存储的&#xff0c;而且每次都会清除&#xff0c;但是web每次请求都会验证用户权限&#xff0c;这是如何做到的呢&#xff1f; 这是通过SecurityContextPersistenceFilter来实现的&#xff0…...

eclipse中的classbean导入外部class文件,clean项目后删除问题

最近被eclipse搞得头疼&#xff0c;下午终于解决 eclipse创建的java项目中&#xff0c;类的输出目录是classbean。由于项目需要&#xff0c;classbean目录下已经导入了外部的类&#xff0c;但每次clean项目时&#xff0c;会把class删掉。 广泛查询&#xff0c;eclipse不清空c…...

OBD诊断(ISO15031) 0A服务

文章目录 功能简介ISO 15765-4的诊断服务定义1、请求具有永久状态的排放相关故障诊断码2、请求具有永久状态的排放相关故障诊断码3、示例报文 功能简介 0A服务&#xff0c;即 Request emission-related diagnostic trouble code with permanent status&#xff08;请求排放相关…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...