当前位置: 首页 > news >正文

迭代学习笔记

一、迭代学习定义和分类

1、直观理解

  • 迭代学习一般应用于重复性的场景。比如控制一个单自由度的小车以特定的速度曲线移动到指定位置,整个时间是10s,控制频率是0.01,那么整个控制序列就会有1000个点。这1000个点在10s内依次发出,完成依次控制,目的就是让小车的速度或者位置跟踪上特定的曲线。我们有一个优势在于跟踪曲线不变,那么我们可以不断进行尝试,只要获得一组良好的控制序列,那么就可以完成控制。

2、更新率

  • 如果我们可以设置一个更新率,根据每一个点面临的误差对控制量进行修改,那么就可以在若干次更新后获得完美的控制序列。
    新控制量 = 旧控制量 + 更新率 新控制量 = 旧控制量 + 更新率 新控制量=旧控制量+更新率

  • 根据更新率与什么参数有关,可以分为开环、闭环、开闭环。如果跟上一次的误差有关就是开环,如果跟此刻的误差有关就是闭环,如果都有关就是开闭环。根据更新率的结构还可以分为D型、PD型等。

  • 需要注意一下有D型和PD型,没有P型,我在仿真中试了半天P型都不收敛。

二、实现例子

  • 网上关于迭代学习的代码实现比较少,很多还是用simulink搭的,不方便复现。这里给一个D型闭环迭代学习例子,被控对象是一个钟摆小车,全部代码用python实现,直接运行即可。
    在这里插入图片描述

1、动力学模型

# 动力学模型函数
def dynamics(state, u):x, theta, dx, dtheta = statedd_x = (u + m2*l*dtheta*dtheta + m2*g*np.sin(theta)*np.cos(theta)) / (m1 + m2*np.sin(theta)*np.sin(theta))dd_theta = (-dd_x*np.cos(theta) + dx*np.sin(theta)*dtheta - np.sin(theta)*(dx*dtheta + g)) / lreturn np.array([dx, dtheta, dd_x, dtheta])

2、四阶龙格库塔积分器和控制器更新率

# 四阶龙格库塔法函数
def RK4(t_start, t_end, fun, Npoints, init_state, u_list, pos_des, spd_des):t = np.linspace(t_start, t_end, Npoints)dt = t[1] - t[0]state = np.zeros((Npoints, len(init_state)))state[0, :] = init_statee = np.zeros((Npoints, 2))for i in range(Npoints-1):u_list[i] = u_list[i] + 1 * (spd_des[i] - state[i, 2])  # 闭环D型更新率u = u_list[i]e[i, 0] = pos_des[i] - state[i, 0]e[i, 1] = spd_des[i] - state[i, 2]k1 = fun(state[i, :], u)k2 = fun(state[i, :] + 0.5 * dt * k1, u)k3 = fun(state[i, :] + 0.5 * dt * k2, u)k4 = fun(state[i, :] + dt * k3, u)state[i + 1, :] = state[i, :] + (1/6) * dt * (k1 + 2 * k2 + 2 * k3 + k4)return state, u_list, e

3、进行迭代

for i in range(10):# 运行RK4state, u_list, e_buff = RK4(t_start, t_end, dynamics, Npoints, [0, 0, 0, 0], u_list, pos_des, spd_des)

4、完整代码和效果展示

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd# 动力学模型函数
def dynamics(state, u):x, theta, dx, dtheta = statedd_x = (u + m2*l*dtheta*dtheta + m2*g*np.sin(theta)*np.cos(theta)) / (m1 + m2*np.sin(theta)*np.sin(theta))dd_theta = (-dd_x*np.cos(theta) + dx*np.sin(theta)*dtheta - np.sin(theta)*(dx*dtheta + g)) / lreturn np.array([dx, dtheta, dd_x, dtheta])# 四阶龙格库塔法函数
def RK4(t_start, t_end, fun, Npoints, init_state, u_list, pos_des, spd_des):t = np.linspace(t_start, t_end, Npoints)dt = t[1] - t[0]state = np.zeros((Npoints, len(init_state)))state[0, :] = init_statee = np.zeros((Npoints, 2))for i in range(Npoints-1):u_list[i] = u_list[i] + 1 * (spd_des[i] - state[i, 2])  # 闭环D型更新率u = u_list[i]e[i, 0] = pos_des[i] - state[i, 0]e[i, 1] = spd_des[i] - state[i, 2]k1 = fun(state[i, :], u)k2 = fun(state[i, :] + 0.5 * dt * k1, u)k3 = fun(state[i, :] + 0.5 * dt * k2, u)k4 = fun(state[i, :] + dt * k3, u)state[i + 1, :] = state[i, :] + (1/6) * dt * (k1 + 2 * k2 + 2 * k3 + k4)return state, u_list, e# 参数设置
m1 = 5
m2 = 1
l = 1
g = 9.8t_start = 0
t_end = 10
Npoints = 10000
t = np.linspace(t_start, t_end, Npoints)# 期望位置和速度
pos_des = np.sin(t) + t
spd_des = np.cos(t) + 1pos_des = t * t + 2 * t
spd_des = 2 * t + 2# 初始状态和控制输入
u_list = [0] * 10000# 创建图形对象
plt.figure(figsize=(12, 12))for i in range(20):# 运行RK4state, u_list, e_buff = RK4(t_start, t_end, dynamics, Npoints, [0, 0, 0, 0], u_list, pos_des, spd_des)# 清除当前图像plt.clf()# 绘制实际位置和期望位置的对比图plt.subplot(3, 1, 1)plt.plot(t, state[:, 0], label='Actual x (position)')plt.plot(t, pos_des, label='Desired x (position)', linestyle='--')plt.xlabel('Time (s)')plt.ylabel('Position')plt.legend()plt.title(f'Iteration {i+1}')# 绘制实际速度和期望速度的对比图plt.subplot(3, 1, 2)plt.plot(t, state[:, 2], label='Actual dx (velocity)')plt.plot(t, spd_des, label='Desired dx (velocity)', linestyle='--')plt.xlabel('Time (s)')plt.ylabel('Velocity')plt.legend()# 绘制控制输入(力)曲线plt.subplot(3, 1, 3)plt.plot(t, u_list, label='Control input (force)')plt.xlabel('Time (s)')plt.ylabel('Force')plt.legend()# 显示图像plt.pause(0.01)# 最后显示图像
plt.show()# 将误差和力存储到CSV文件
data = np.hstack((e_buff, np.array(u_list).reshape(-1, 1)))
df = pd.DataFrame(data, columns=['Position Error', 'Velocity Error', 'Control Input'])
df.to_csv('error_and_force_data.csv', index=False)

在这里插入图片描述

5、实物效果

  • 这个曲线不是上面仿真小车钟摆的实物测试,而是一个有一定质量的物体yaw轴回转的控制效果,展示的是位置曲线。这个物体受到不小的摩擦力,所以在开始迭代时开始和后来都会有停止不动的情况出现。同时,摩擦力也导致这个物体受到很大的干扰,就像小车钟摆的重物一样。

  • 值得一提的是整个实物的算法测试过程非常顺利,在代码完成后,一次测试就成功了。使用的还是闭环D型迭代学习,经过三四次迭代就收敛到期望曲线附近了。这说明迭代学习还是一种很实用的算法。
    在这里插入图片描述

相关文章:

迭代学习笔记

一、迭代学习定义和分类 1、直观理解 迭代学习一般应用于重复性的场景。比如控制一个单自由度的小车以特定的速度曲线移动到指定位置,整个时间是10s,控制频率是0.01,那么整个控制序列就会有1000个点。这1000个点在10s内依次发出&#xff0c…...

【安全】系统安全设计规范(DOC完整版)

1.1安全建设原则 1.2 安全管理体系 1.3 安全管理规范 1.4 数据安全保障措施 1.4.1 数据库安全保障 1.4.2 操作系统安全保障 1.4.3 病毒防治 1.5安全保障措施 1.5.1实名认证保障 1.5.2 接口安全保障 1.5.3 加密传输保障 1.5.4终端安全保障 软件资料清单列表部分文档&…...

windows常用命令整理

本文分享一些常用的windows命令。根据功能的不同,大致可分为以下几个方面,一是文件操作命令,二是进程相关命令,三是磁盘相关命令,四是网络相关命令,五是其他命令。 1.文件操作命令 dir:显示当…...

视频处理基础知识1

1、图像基本知识 图像的组成:像素、RGB(每个像素由三个发光二极管组成)、分辨率(横纵向像素的个数乘积) PPI每英寸的像素数 DPI每英寸的点数,有可能一个点有多个像素 PPI>300 就属于视网膜级别,就是很清晰&#…...

Linux退不出vim编辑模式

目录 第一章、问题分析1.1)报错提示 第二章、解决方式 友情提醒: 先看文章目录,大致了解文章知识点结构,点击文章目录可直接跳转到文章指定位置。 第一章、问题分析 1.1)报错提示 报错如下:使用Linux的vi…...

TikTok养号的网络环境及相关代理IP知识

TikTok作为一个流行的短视频分享平台,其用户量非常庞大,很多商家和个人都会使用TikTok来进行引流和推广。由于TikTok的规则和政策限制了每个用户每天发布视频的数量,因此许多用户会使用多个账号来发布更多的视频以提高曝光率。 然而&#xff…...

过程调用和数组的分配访问

系列文章 : 深入理解计算机系统笔记 文章目录 系列文章3.7 过程3.7.1 运行时栈3.7.2 转移控制3.7.3 数据传送3.7.4 栈上的局部存储3.7.5 寄存器中的局部存储空间3.7.6 递归过程 3.8 数组分配和访问3.8.1 基本原则3.8.2 指针运算3.8.3 嵌套的数组3.8.4 定长数组3.8.5 变长数组…...

TeamViewer手机端APP提示:请先验证账户

当你在手机端下载安装了TeamViewerAPP后,需要你先登录个人账号,然后还会要求你验证账户,同时跳转到一个网址中,但是这个网址并没有自动跳转到验证账户的位置。 解决办法: 在手机浏览器中进入下面这个网址:…...

【SpringBoot】分页查询

1. Controller ApiOperation("分页查询")GetMapping("/page")public Result<PageResult> pageResultResult(EmployeePageQueryDTO employeePageQueryDTO) {System.out.println(employeePageQueryDTO.toString());PageResult pageResult employeeSer…...

微软CrowdStrike驱动蓝屏以及内核签名

原因 当Windows操作系统遇到严重错误导致系统崩溃时&#xff0c;屏幕显示为蓝色&#xff0c;通常伴有错误代码和信息&#xff0c;这被称为“蓝屏死机”&#xff08;Blue Screen of Death&#xff0c;简称BSOD&#xff09; https://www.thepaper.cn/newsDetail_forward_281262…...

Spring中Bean的循环依赖

目录 定义&#xff1a; 循环依赖的后果&#xff1a; 一&#xff1a;三级缓存 1、大概的思路&#xff1a; 注意&#xff1a; 2、执行过程&#xff1a; A半完成&#xff1a; B完成&#xff1a; A完成&#xff1a; 注&#xff1a; 二&#xff1a;Lazy 定义&#xff1a; …...

Java二十三种设计模式-代理模式模式(8/23)

代理模式&#xff1a;为对象访问提供灵活的控制 引言 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它为其他对象提供一个代替或占位符&#xff0c;以控制对它的访问。 基础知识&#xff0c;java设计模式总体来说设计模式分为三大类&#…...

Windows 11 家庭中文版 安装 VMWare 报 安装程序检测到主机启用了Hyper-V或Device

1、问题 我的操作系统信息如下&#xff1a; 我在安装 VMWare 的时候&#xff0c;报&#xff1a; 因为我之前安装了 docker 桌面版&#xff0c;所以才报这个提示。 安装程序检测到主机启用了 Hyper-v或 Device/credential Guard。要在启用了Hyper-或 Device/Credential Guard …...

机械学习—零基础学习日志(高数09——函数图形)

零基础为了学人工智能&#xff0c;真的开始复习高数 函数图像&#xff0c;开始新的学习&#xff01; 幂函数 利用函数的性质&#xff0c;以幂函数为例&#xff0c;因为单调性相同&#xff0c;利用图中的2和3公式&#xff0c;求最值问题&#xff0c;可以直接将式子进行简化。这…...

java迭代集合出现并发修改异常(ConcurrentModificationException)的原因以及解决方案

java迭代集合出现并发修改异常(ConcurrentModificationException)的原因以及解决方案 一. 什么时候会出现并发修改异常? 这里先看需求 : 定义一个集合,存储 唐僧,孙悟空,猪八戒,沙僧,遍历集合,如果遍历到猪八戒,往集合中添加一个白龙马 很显然要求我们先创建一个集合并进行…...

BGP选路之Local Preference

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较&#xff0c;以确定去往该目标网络的最优BGP路由。BGP首先比较的是路由信息的首选值&#xff08;PrefVal)&#xff0c;如果 PrefVal相同&#xff0c;就会比较本…...

WEB渗透信息收集篇--IP和端口信息

WEB渗透信息收集篇--域名信息-CSDN博客 WEB渗透信息收集篇--网站架构和指纹识别-CSDN博客 ​​​​​​​​​​​​​​WEB渗透信息收集篇--人员信息-CSDN博客​​​​​​​ WEB渗透信息收集篇--其他信息-CSDN博客 一、ASN ASN Tool - MxToolBox ASN通常指的是"自…...

国内微短剧系统平台抖音微信付费小程序app开发源代码交付

微短剧作为当下热门的内容&#xff0c;结合抖音平台的广泛用户基础&#xff0c;开发微短剧付费小程序APP具有显著的市场潜力&#xff0c;用户对于短剧内容的需求旺盛&#xff0c;特别是在言情、总裁、赘婿等热门题材方面&#xff0c;接下来给大家普及一下微短剧小程序系统。 顺…...

Java语言程序设计基础篇_编程练习题**15.19 (游戏:手眼协调)

**15.19 (游戏:手眼协调) 请编写一个程序&#xff0c;显示一个半径为10像素的实心圆&#xff0c;该圆放置在面板上的随机位置&#xff0c;并填充随机的顔色&#xff0c;如图15-29b所示。单击这个圆时&#xff0c;它会消失&#xff0c;然后在另一个随机的位置显示新的随机颜色的…...

学习记录day16—— 数据结构 双向链表 循环链表

双向链表 1、概念 1&#xff09;就是从任意一个节点既能存储其前驱节点&#xff0c;又能存储后继节点 2)结构体中增加一个指向前驱节点的指针 //定义数据类型 typedef int datatype;//定义节点类型 typedef struct Node {union {int len;datatype data;};struct Node *prio; …...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...