词云图制作
词云图制作
一、什么是词云

这就是词云。
“词云”的概念最早是美国西北大学新闻学副教授、新媒体专业主任里奇•戈登( Rich Gordon )提出的。词云( Word Cloud ),又称文字云、标签云( Tag Cloud )、关键词云( Keyword Cloud ),是文本数据的一种可视化展现方式,它一般是由文本数据中提取的词汇组成某些彩色图形。词云图的核心价值在于以高频关键词的可视化表达来传达大量文本数据背后的有价值的信息。
二、基础技术
此处是以《滕王阁序》为文本进行的实验
1、词根拆解
import jieba.posseg as pseg# 需要制作图云的文本位置
text_file = open("滕王阁序.txt", encoding="utf-8").read()
# 词根拆解对象,对象格式为 词、词性
words = pseg.cut(text_file, '')
jieba可以按照文本的词缀将全文本按照词性进行拆分
将words输出查看
for word, flag in words:print(f'word: {word}, flag: {flag}')
格式如下
word: 豫章, flag: ns
word: 故, flag: n
word: 郡, flag: n
flag的部分值如下
| flag | 含义 |
|---|---|
| n | 名词 |
| x | 标点符号 |
| v | 动词 |
| ns | 地名 |
2、获取高频词
将拆分的词根放到一个list,按照出现的次数排列,获取前两个
from collections import Counter
report_words = []
for word, flag in words:report_words.append(word)
result = Counter(report_words).most_common(2)
结果如下
[('帝子', 2), ('豫章', 1)]
3、设置停用词
文本中可能会出现大量无用词汇(如:你、我、他),需要将这些词汇排除在外,避免对结果造成干扰。
from wordcloud import WordCloud, STOPWORDS
stopwords = set(STOPWORDS)
stopwords.update(["你, "我", "他"])
wordcloud = WordCloud(.....stopwords=stopwords, # 停用词......)
4、设置图云形状
有时为了展示的形状规格化,会找个图片让词云按照制定图片的轮廓进行展示
import PIL.Image as Image
import numpy as np
from wordcloud import WordCloud
# egg.png 为图片的全路径
background = Image.open("egg.png").convert('RGB')
mask = np.array(background)
wordcloud = WordCloud(.....mask =mask, # 掩膜......)
(此处暂未明晰为什么要转为np数组,翻看源码的时候发现默认值是这样的)、
# recompute integral image
if self.mask is None:img_array = np.asarray(img_grey)
else:img_array = np.asarray(img_grey) + boolean_mask
5、设置字体和图云颜色
from wordcloud import WordCloud
# 字体样式路径(需要自己去下载)
font_path = r"./STLITI.TTF"
# 设置字体大小
max_font_size = 200
min_font_size = 10# 建立颜色数组,可更改颜色
color_list = ['#FF274B', '#37A2DA', '#FD666D', '#67E0E3']
# 调用颜色数组
colormap = colors.ListedColormap(color_list)
wordcloud = WordCloud(.....font_path=font_path, # 字体路径colormap=colormap, # 字体颜色max_font_size=max_font_size, # 最大字体大小min_font_size=min_font_size, # 最小字体大小......)
6、WordCloud的参数
| 参数 | 说明 |
|---|---|
| scale | 输出清晰度 |
| font_path | 自定义字体所在路径 |
| colormap | 字体颜色 |
| width | 输出图片宽度 |
| height | 输出图片高度 |
| background_color | 图片背景颜色 |
| stopwords | 停用词 |
| mask | 掩膜 |
| max_font_size | 最大字体大小 |
| min_font_size | 最小字体大小 |
三、完整案例演示
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import numpy as np
import jieba.posseg as pseg
from collections import Counter
import PIL.Image as Image
from matplotlib import colorsfile_path = r'E:\MYCODE\PYECHARTS\滕王阁序.txt'stop_words = ["的", "我"]
image_path = r"E:\MYCODE\PYECHARTS\egg.png"
color_list = ['#FF274B', '#37A2DA', '#FD666D', '#67E0E3']
target_path = r"E:\MYCODE\PYECHARTS\wordcloud.png"def split_word(file_path, word_length=None, word_flag=None, frequencylimit=None):"""将文本中的内容拆分成词根:param file_path: 文件路径:param word_length: 拆分结果中词的长度(长度小于参数值的词将被舍弃),不做设置赋值为 None:param word_flag: 词性 (n:名称、v:动词、x标点符号),不做设置赋值为 None:param frequencylimit: 频率限制,词的出现个数超过频率限制才返回。不做设置赋值为 None:return:"""# 需要制作图云的文本位置text_file = open(file_path, encoding="utf-8").read()# 词根拆解对象,对象格式为 词、词性words = pseg.cut(text_file, '')# 按指定长度和词性提取词report_words = []for word, flag in words:useword = wordif word_length is not None:useword = Noneif len(word) > word_length:useword = wordif word_flag is not None:useword = Noneif word_flag in flag:useword = wordif useword is not None:report_words.append(useword)# 统计高频词汇if frequencylimit is not None:result = Counter(report_words).most_common(frequencylimit)else:result = report_words# 将词汇统计结果转化为字典word_dict = dict(result)return word_dictdef get_word_cloud(word_dict, stop_words, image_path, color_list, target_path, font_path=None, other_field=None, show=False):"""获取词云图:param word_dict: 词云字典:param stop_words: 停用词列表:param image_path: 参照图片位置(用于设置图云形状):param font_path: 字体路径:param color_list: 颜色列表:param target_path: 目标图片路径:param other_field: 参考 default_field:param show: 是否展示:return:"""default_field = {'scale': 4, 'width': 1600, 'height': 900, 'background_color': 'white', 'max_font_size': 200,'min_font_size': 10}if other_field is not None:for field, value in other_field.items():if value is not None:default_field[field] = value# 设置停用词stopwords = set(STOPWORDS)stopwords.update(stop_words)# 设置png掩膜(需要设置的图云形状图片路径)background = Image.open(image_path).convert('RGB')mask = np.array(background)# 设置字体样式路径if font_path is None:font_path = r"./STLITI.TTF"# 建立颜色数组,可更改颜色if color_list is None:color_list = ['#FF274B', '#37A2DA', '#FD666D', '#67E0E3']# 调用颜色数组colormap = colors.ListedColormap(color_list)# 生成词云wordcloud = WordCloud(scale=default_field['scale'],font_path=font_path,colormap=colormap,width=default_field['width'],height=default_field['height'],background_color=default_field['background_color'],stopwords=stopwords, # 停用词mask=mask, # 掩膜max_font_size=default_field['max_font_size'],min_font_size=default_field['min_font_size'])wordcloud.generate_from_frequencies(word_dict)if show:# 使用 matplotlib 显示词云plt.imshow(wordcloud, interpolation='bilinear')plt.axis('off')plt.show()# 保存词云图wordcloud.to_file(target_path)if __name__ == '__main__':# 词根拆解word_dict = split_word(file_path=file_path, word_length=2, word_flag='n', frequencylimit=2000)print(word_dict)# 生成词云图get_word_cloud(word_dict=word_dict, stop_words=stop_words, image_path=image_path, color_list=color_list, target_path=target_path, show=True)
运行结果为第一章节的图片
相关文章:
词云图制作
词云图制作 一、什么是词云 这就是词云。 “词云”的概念最早是美国西北大学新闻学副教授、新媒体专业主任里奇•戈登( Rich Gordon )提出的。词云( Word Cloud ),又称文字云、标签云( Tag Cloud &#x…...
AndroidStudio与手机进行无线调试
(一)、前提条件 一部手机一条USB数据线一部电脑手机和电脑连接到同一个 Wifi开启手机的USB调试功能开启手机的无线调试功能 (二)、操作步骤 1、 将手机和电脑用USB数据线连接 2、 打开 终端,输入 adb devices ,查看手机和电脑是否连接成功。如下图: 2、…...
脉冲编码调制(PCM,Pulse Code Modulation)简介
脉冲编码调制(PCM,Pulse Code Modulation) 脉冲编码调制(PCM,Pulse Code Modulation)是一种将模拟信号转换为数字信号的技术。在音频处理、电话通信以及其他许多领域都有广泛应用。PCM通过采样、量化、编码等三个主要步骤将模拟信号转换为数…...
Pytorch transforms 的研究
绝对路径与相对路径差别 transforms的使用 from torchvision import transforms from PIL import Imageimg_path "dataset/train/bees/16838648_415acd9e3f.jpg" img Image.open(img_path) tensor_trans transforms.ToTensor() tensor_img tensor_trans(img) prin…...
一个C++模板工厂的编译问题的解决。针对第三方库的构造函数以及追加了的对象构造函数。牵扯到重载、特化等
一窥模板的替换和匹配方式:偏特化的参数比泛化版本的还要多:判断是不是std::pair<,>。_stdpair模板参数太多-CSDN博客 简介 在一个项目里,调用了第三封的库,这个库里面有个类用的很多,而且其构…...
《昇思 25 天学习打卡营第 20 天 | Pix2Pix实现图像转换 》
《昇思 25 天学习打卡营第 20 天 | Pix2Pix实现图像转换 》 活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 签名:Sam9029 Pix2Pix模型概述 Pix2Pix是一种基于条件生成对抗网络(cGAN)的图像转换模型&#x…...
关于c#的简单应用三题
#region 输入一个正整数,求1~这个数的阶乘 public static void Factorial(int a) { int result 1; for (int i 1; i < a; i) { result result * i; } Console.WriteLine(result); } #endregion #region 一个游戏&#…...
(十三)Spring教程——依赖注入之工厂方法注入
1.工厂方法注入 工厂方法是在应用中被经常使用的设计模式,它也是控制反转和单例设计思想的主要实现方法。由于Spring IoC容器以框架的方式提供工厂方法的功能,并以透明的方式开放给开发者,所以很少需要手工编写基于工厂方法的类。正是因为工厂…...
Redission中的Lua脚本写法、理解
对于Redission看门狗机制中的为了保证原子性的Lua脚本的写法规则是什么样的呢 ? 对于源码中的Lua脚本又是什么意思? 我们一起来看一下 首先,我们先基本的熟悉一下lua脚本的逻辑 在Lua脚本中,if (…) then … end 语句的执行过程…...
视频共享融合赋能平台LntonCVS视频监控管理平台视频云解决方案
LntonCVS是基于国家标准GB28181协议开发的视频监控与云服务平台,支持多设备同时接入。该平台能够处理和分发多种视频流格式,包括RTSP、RTMP、FLV、HLS和WebRTC。主要功能包括视频直播监控、云端录像与存储、检索回放、智能告警、语音对讲和平台级联&…...
GraphRAG + GPT-4o mini 低成本构建 AI 图谱知识库
更好的效果,更低的价格,听起来是不是像梦呓? 限制 首先,让我们来介绍一个词:RAG。 简单来说,RAG(Retrieval-Augmented Generation,检索增强生成) 的工作原理是将大型文档…...
全国区块链职业技能大赛第十套区块链产品需求分析与方案设计
任务1-1:区块链产品需求分析与方案设计 养老保险平台中涉及到参保人、社保局、公安局、工作单位等参与方,他们需要在区块链养老保险平台中完成账户注册、身份上链、社保代缴、信息核查等多种业务活动。通过对业务活动的功能分析,可以更好的服务系统的开发流程。基于养老保险…...
分布式Apollo配置中心搭建实战
文章目录 环境要求第一步、软件下载第二步、创建数据库参考文档 最近新项目启动,采用Apollo作为分布式的配置中心,在本地搭建huanj 实现原理图如下所示。 环境要求 Java版本要求:JDK1.8 MySql版本要求:5.6.5 Apollo版本要求&…...
Android monkey命令和monkey脚本详解
Monkey命令 monkey 是 Android 平台上一个非常有用的工具,它可以帮助开发者在设备上生成随机的用户事件流,如按键输入、触摸屏手势等,以此来测试应用的稳定性。这对于发现应用中的崩溃、异常和性能问题特别有用。 基本语法 adb shell monk…...
vue 实现对图片的某个区域点选, 并在该区域上方显示该部分内容
目录 1、通义灵码实现: 2、csdn的C知道: 3、百度comate: 1、通义灵码实现: 在 Vue 中实现对图片某个区域的点选并显示该区域属于哪一部分,通常涉及到几个关键步骤: 图片区域划分: 首先&#…...
配置文件格式 INI 快速上手
文章目录 1.简介2.语法节键值对注释大小写空白行数据类型字符串 (String)整数 (Integer)浮点数 (Float)布尔值 (Boolean)列表 (List) 3.示例4.解析参考文献 1.简介 INI 的全称是 Initialization,即为初始化文件,最早是 Windows 系统配置文件所采用的格式…...
基于WebGoat平台的SQL注入攻击
目录 引言 一、安装好JAVA 二、下载并运行WebGoat 三、注册并登录WebGoat 四、模拟攻击 1. 第九题 2. 第十题 3. 第十一题 4. 第十二题 5. 第十三题 五、思考体会 1. 举例说明SQL 注入攻击发生的原因。 2. 从信息的CIA 三要素(机密性、完整性、可用性&…...
SpringMvc有几个上下文
你好,我是柳岸花明。 SpringMVC作为Spring框架的重要组成部分,其启动流程和父子容器机制是理解整个框架运行机制的关键。本文将通过一系列详细的流程图,深入剖析SpringMVC的启动原理与父子容器的源码结构。 SpringMVC 父子容器 父容器的创建 …...
k8s部署rabbitmq集群
1 部署集群 1.1 安装 # 创建一个中间件的命名空间 kubectl create namespace middleware # 创建ConfigMap,包含RabbitMQ的配置文件内容 kubectl apply -f rabbitmq-configmap.yaml # 配置用于存储RabbitMQ数据的PersistentVolume(PV)和PersistentVolum…...
Python利用包pypinyin汉字转拼音(处理多音字)
一、汉字转拼音 在python中将汉字的拼音输出可以采用pypinyin包,一下是简单的demo示例: 默认调用pinyin方法转换时时默认时带声调的,不带声调需要添加“styleStyle.NORMAL”参数。 from pypinyin import pinyin, Styledef pinyin_transfer…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
