【OpenCV C++20 学习笔记】扫描图片数据
扫描图片数据
- 应用情景
- 图像数据扫描的难点
- 颜色空间缩减(color space reduction)
- 查询表
- 扫描算法
- 计算查询表
- 统计运算时长
- 连续内存
- 3种扫描方法
- C风格的扫描方法
- 迭代器方法
- 坐标方法
- LUT方法
- 算法效率对比
- 结论
应用情景
图像数据扫描的难点
在上一篇文章《基本图像容器——Mat》中,已经详细描述了OpenCV储存图像数据的形式(图像的每个像素储存为一个矩阵中的数据项,矩阵的每个数据项包括各个颜色通道的值,如RGB3通道包含红、绿、蓝共3个通道的颜色值)。所以,矩阵的值的列数为矩阵的列数乘以颜色通道数,如下图所示,OpenCV默认的BGR格式的数据有3个颜色通道,所以实际有m*3列数值;行数则不变:
如果我们使用uchar(8bits)类型去储存每个像素的值,那么像素的每个颜色通道可以有256个可能的值( 2 8 = 256 2^8=256 28=256),这样的话如果是3通道的数据,那每个数据项就有( 25 6 3 = 16 , 777 , 216 256^3=16,777,216 2563=16,777,216)种可能的颜色值了。如果矩阵很大,那就会给算法的执行带来很大压力。
颜色空间缩减(color space reduction)
为了减轻扫描图像数据的算法压力,可以将现有的颜色值除以某个值,从而缩小颜色值的值域。例如,将所有0-9的颜色值都用0替代,将所有10-19的颜色值都用10替代,依此类推。用数学公式来表示:
I n e w = ( I o l d 10 ) ∗ 10 I_{new} = ( \frac{I_{old}} {10})*10 Inew=(10Iold)∗10
- I n e w I_{new} Inew:缩减之后的颜色值,以下简称缩减值
- I o l d I_{old} Iold:缩减之前的原始颜色值,以下简称原始值
推而广之,如果想要应用其他的缩减率,比如2,也就是说,0-1都用0来代替,2-3都用1来代替,那除数就会变成2;将这个除数用 d d d来表示,并称之为缩减因子,则公式会变成:
I n e w = ( I o l d d ) ∗ d I_{new} = ( \frac{I_{old}} {d})*d Inew=(dIold)∗d - I n e w I_{new} Inew:缩减之后的颜色值,以下简称缩减值
- I o l d I_{old} Iold:缩减之前的原始颜色值,以下简称原始值
- d d d:缩减因子
注意:uchar类型被整数除了之后,得出的结果依然是uchar类型
但是对每个颜色值都执行上述的除法和乘法运算,仍然会消耗很多算力。然而,由于每个颜色值的值域是有限的,比如uchar类型是[0, 256],所以如果能直接计算出所有可能的缩减结果,并进行赋值运算,会节省很多算力。所以,就产生了“查询表”
查询表
查询表就是储存与原始值一一对应的缩减值的数组(一维或多维)。一旦数据类型确定,查询表的大小就确定不变了。比如,uchar类型的查询表就只有256个缩减值,因为原始值总共就只有256种可能。然后运用这个查询表将每个原始值都替换成查询表中对应的值,就不必对每一个原始值都进行缩减计算了,而只是简单的查询和赋值,这样就能节省算力。而且,原始值越多,节省效果越好。这就是查询表的优势。
扫描算法
该实例将3种算法放在一个main函数中,main函数接收一个参数数组argv[],其中有可以有3个或4个参数:
- 默认参数:程序名(调试时不需要用户指定)
- 图片文件路径
- 缩减因子:即上述公式中的 d d d
- 图片读取格式:以灰度格式读取,则传递“G”;如不指定该参数,则默认采用BGR格式读取
静态函数help()详细描述了该方法的使用:
static void help()
{std::cout<< "\n--------------------------------------------------------------------------" << endl<< "这个程序展示如何在OpenCV中扫描图片(cv::Mat)"<< "根据输入图片路径以及缩减因子(大于0的整数)" << endl<< "这个程序分别使用了C风格方法、迭代器方法、坐标方法和LUT方法进行扫描" << endl<< "参数输入:" << endl<< "程序名 <图片路径> <缩减因子> [G]" << endl<< "如果加了参数G,则使用灰度格式读入图片" << endl<< "--------------------------------------------------------------------------" << endl<< endl;
}
在main函数中,首先对输入的参数进行分析和处理:
if (argc < 3)
{//参数数量小于3个,则退出函数并输出提示cout << "Not enough parameters" << endl;return -1;
}Mat I, J;
if (argc == 4 && !strcmp(argv[3], "G")) //当参数数量为4且,最后一个参数是"G"时I = imread(argv[1], IMREAD_GRAYSCALE); //以灰度格式读取图片,并储存在Mat对象I中
elseI = imread(argv[1], IMREAD_COLOR); //否则以BGR格式读取图片,并储存在Mat对象I中if (I.empty())
{//如果读取的数据为空,则退出函数并输出提示cout << "The image" << argv[1] << " could not be loaded." << endl;return -1;
}
计算查询表
接下来,根据传入的参数数组中的第3个参数,即argv[2],计算查询表:
int divideWith { 0 }; //1-4行:将字符串转换成数字,并储存在变量divdeWith中作为缩减因子
stringstream s;
s << argv[2];
s >> divideWith;
if (!s || !divideWith)
{//如果无法接收第3个参数,或者参数为0,则退出函数,并输出提示cout << "Invalid number entered for dividing. " << endl;return -1;
}uchar table[256]; //用一个长度为256的一维数组来储存查询表
for (int i { 0 }; i < 256; ++i) //计算查询表,计算结果为uchar类型table[i] = static_cast<uchar>(divideWith * (i / divideWith));
在将字符串转换成数字的过程中使用了C++中的字符串流stringstream
,字符串流对象s
,接收参数字符串argv[2]
,然后将其传给整数变量divideWith
,作为后面进行缩减运算的缩减因子。
计算查询表的for循环块,进行了256次循环,将[0, 255]中的所有整数依次进行了缩减运算,得出256个uchar类型的缩减值,并依次储存在一个uchar类型的数组中。
统计运算时长
这个程序为了比较不同扫描方法的速度,使用了使用了OpenCV中的cv::getTickCount()
和cv::getTickFrequency()
函数进行计时。前者返回某个运行节点的CPU的tick数(一个tick为CPU频率的倒数);后者返回CPU每秒的tick数。如果获取事件起始点和结束点的CPU的tick数,然后用它们的差除以CPU每秒的tick数就能得到事件起始点和结束点之间的时间差,单位为秒。具体代码如下:
double t { static_cast<double>getTickCount() }; //将返回值类型从原本的int型转换为double型
//扫描函数
t = (static_cast<double>getTickCount() - t)/getTickFrequency(); //转换为double型后,除法运算结果中的小数就会被保留
cout << "用时 " << t << " 秒" << endl;
这几行代码放在每个扫描方法的前后,从而能为每个扫描方法计算运行时间,便可比较它们的运行速度
连续内存
虽然储存图像数据的Mat对象可能是个二维甚至多维矩阵,但是在内存中矩阵是被按行分成若干个一维数组储存的。这些一维数组可能被放在一起,形成一个连续的内存空间,也可能被分开储存。OpenCV中的cv::Mat::isContinuous()
可以判断矩阵在内存中是否是连续的。被储存在一个连续内存中的矩阵扫描起来会更快。
3种扫描方法
如果没耐心对比每种方法的思路,可以直接结论部分看每种方法的优缺点,然后找到相应方法的章节进行进一步阅读。
但是,除了LUT方法,前三种方法都需要自己编写将替换原始值的语句,该语句中对查询表的索引,思路比较绕,为了避免重复,本文只在第一种方法,即C风格的扫描方法中对此进行了详细解释,如果看不懂可以到该章节进行参考。
C风格的扫描方法
C风格的扫描方法少不了要进行C风格的二维数组的遍历操作,包括行指针、列指针等。
//! [scan-c]
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{//只接收uchar类型的矩阵CV_Assert(I.depth() == CV_8U); //depth函数返回每个通道的数值的类型,如CV_8U为8比特无符号字符串类型int channels { I.channels() }; //channels函数返回矩阵中的颜色通道数int nRows { I.rows };int nCols { I.cols * channels }; //实际列数为矩阵列数*颜色通道数if (I.isContinuous()){//如果是储存在连续空间,则按一维数组来处理nCols *= nRows; //一维数组的实际列数为原列数*行数nRows = 1; //一维数组行数为1}int i, j;uchar* p; //uchar类型的p指针用来储存扫描结果for (i = 0; i < nRows; ++i){p = I.ptr<uchar>(i); //ptr模板函数根据行数i返回矩阵第i行的行指针,并在尖括号中指定返回的指针类型for (j = 0; j < nCols; ++j){//原来的p[j]是个列指针,实际为矩阵i行j列的值,即颜色的原始值//因为查询表示按0-255的顺序排列的,//所以,以p[j]为下标访问查询表,正好能访问到原始值对应的缩减值p[j] = table[p[j]]; //将查询表中的缩减值赋值给p指针中对应的位置//由于p是指向Mat对象I中的矩阵的,所以I实际上也被更改了}}return I; //返回被更改的I
}
//! [scan-c]
注意,该函数传入的第2个参数为uchar类型的常量指针常量,即这个指针指向的对象不能被修改,指针的地址也不能被修改,这样才能保证查询表在函数运行结束之后仍然没变,可以被再次利用。
该函数最核心的部分就是对数组进行遍历操作的for循环语句。这里巧妙地使用列指针,即原始值,作为访问查询表数组的下标,从而找到对应的缩减值。具体思路写在注释里了,读者可以参阅。
当矩阵是被储存在连续的内存空间中的时候,实际上是对一个一维数组进行遍历,i为1,只循环1次。
如果确定矩阵是储存在连续内存空间中的,那么还有另外一种方法可以完成对它的遍历:
uchar* p { I.data }; //data是Mat类的public数据成员,它储存了Mat对象首行的行指针for(unsinged int i { 0 }; i < ncol*nrows; ++i)//行指针自增之后就变成了列指针,即一维数组第i列的地址//再进行解引用操作,就得到了第i列的值*p++ = table[*p];
迭代器方法
使用迭代器比用数组指针更加方便,因为不用考虑行指针、列指针的问题,没有嵌套的for循环,只需要一层for循环。
但是,迭代器只能代替矩阵中的数据项。也就是说,如果是单通道的灰度格式的图片数据,迭代器正好代替矩阵中的每个颜色值;但是,如果是3通道的BGR格式的图片数据,迭代器实际上代替的是一个长度为3的数组,其中包含了3个颜色值(分别为蓝、绿、红值),在这种情况下还必须对迭代器进行进一步的操作。
//! [scan-iterator]
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{CV_Assert(I.depth() == CV_8U);const int channels{ I.channels() };switch (channels){//switch语句实现对两种情况的分别处理case 1: //单通道的灰度图片数据{MatIterator_<uchar> it, end; //声明起始和终止迭代器for (it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)//begin和end函数分别返回指向第一个和最后一个数据项的迭代器*it = table[*it]; //对迭代器进行解引用操作可获得对应的数据项break;}case 3: //3通道的BGR图片数据{MatIterator_<Vec3b> it, end;for (it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it){//还需要对迭代器中的3个值分别进行赋值操作//*it[0]为数据项在第一个颜色通道的值(*it)[0] = table[(*it)[0]];(*it)[1] = table[(*it)[1]];(*it)[2] = table[(*it)[2]];}}}return I;
}
//! [scan-iterator]
如果在3通道的情况,没有对迭代器中的数组进行进一步的操作的话,那改变的只是每个像素的蓝色值。因为OpenCV将RGB转换成了BGR,第一个值是蓝色值。
坐标方法
这种方法其实一般是用来确定需要某个数据项的行数和列数的,也称为随机获取,所以并不建议用来扫描图像数据。
这种方法也需要对单通道和3通道数据进行分情况的处理。
在单通道数据中,该方法运用了数据项的动态地址,并返回数据项的引用,这由函数cv::Mat::at()
来实现;
在3通道数据中,该方法运用了Mat_
类型达到了同样的目的。/Mat_类型为储存了每个数据项的类型信息的Mat类型;Mat_类型可以用(row, col)方式来访问;这种访问等同于在Mat类型中用at(row, col)来进行访问
具体解释见代码注释:
//! [scan-random]
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{CV_Assert(I.depth() == CV_8U);const int channels{ I.channels() };switch (channels){case 1:{for (int i{ 0 }; i < I.rows; ++i)for (int j{ 0 }; j < I.cols; ++j)//at函数获取矩阵在i行j列的数据项的地址,并返回它的引用I.at<uchar>(i, j) = table[I.at<uchar>(i, j)];break;}case 3:{//Vec3b类型为OpenCV中定义的3字节数据类型,用来储存长度为3的uchar类型数组正好Mat_<Vec3b> _I = I; //这里不能用C++20的初始化语法,会报错:无法转化参数类型for (int i{ 0 }; i < I.rows; ++i)for (int j{ 0 }; j < I.cols; ++j){_I(i, j)[0] = table[_I(i, j)[0]];_I(i, j)[1] = table[_I(i, j)[1]];_I(i, j)[2] = table[_I(i, j)[2]];}I = _I;break;}}return I;
}
//! [scan-random]
LUT方法
在OpenCV的core模块,有一个专门用来修改图片数据矩阵中的值的方法,cv::LUT()
。其具体用法如下:
//! [table-init]
Mat lookUpTable(1, 256, CV_8U); //用Mat构造函数创建uchar类型的1维矩阵
uchar* p = lookUpTable.ptr(); //获取矩阵的首地址
for (int i = 0; i < 256; ++i)p[i] = table[i]; //将之前计算的查询表中的数值复制到矩阵中
//! [table-init]//! [table-use]
LUT(I, lookUpTable, J);
//! [table-use]
cv::LUT()
函数使用了3个参数
- 需要进行修改的原始矩阵,输入矩阵
- 查询表矩阵
- 接收修改结果的矩阵,输出矩阵
该函数没有返回值。只用一条语句,就实现了用查询表矩阵中的缩减值替换输入矩阵中的原始值,然后输出替换结果。
算法效率对比
将3种方法整合在一个cpp文件中,并统计每个方法的运算时长。整合后的代码如下:
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>import <iostream>;
import <sstream>;using namespace cv;
using namespace std;static void help()
{std::cout<< "\n--------------------------------------------------------------------------" << endl<< "这个程序展示如何在OpenCV中扫描图片(cv::Mat)"<< "根据输入图片路径以及缩减因子(大于0的整数)" << endl<< "这个程序分别使用了C风格方法、迭代器方法、坐标方法和LUT方法进行扫描" << endl<< "参数输入:" << endl<< "程序名 <图片路径> <缩减因子> [G]" << endl<< "如果加了参数G,则使用灰度格式读入图片" << endl<< "--------------------------------------------------------------------------" << endl<< endl;
}Mat& ScanImageAndReduceC(Mat& I, const uchar* table);
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* table);int main(int argc, char* argv[])
{help();if (argc < 3){std::cout << "缺少参数" << endl;return -1;}Mat I, J;if (argc == 4 && !strcmp(argv[3], "G"))I = imread(argv[1], IMREAD_GRAYSCALE);elseI = imread(argv[1], IMREAD_COLOR);if (I.empty()){std::cout << "图片" << argv[1] << "打不开。" << endl;return -1;}//! [dividewith]int divideWith{ 0 };stringstream s;s << argv[2];s >> divideWith;if (!s || !divideWith){std::cout << "无效缩减因子。 " << endl;return -1;}uchar table[256];for (int i{ 0 }; i < 256; ++i)table[i] = static_cast<uchar>(divideWith * (i / divideWith));//! [dividewith]const int times{ 100 };double t;t = static_cast<double>(getTickCount());for (int i{ 0 }; i < times; ++i){Mat clone_i{ I.clone() };J = ScanImageAndReduceC(clone_i, table);}t = 1000 * (static_cast<double>(getTickCount()) - t) / getTickFrequency();t /= times;std::cout << "C风格方法每运行"<< times << "次平均耗时: " << t << "毫秒。" << endl;t = static_cast<double>(getTickCount());for (int i{ 0 }; i < times; ++i){Mat clone_i{ I.clone() };J = ScanImageAndReduceIterator(clone_i, table);}t = 1000 * (static_cast<double>(getTickCount()) - t) / getTickFrequency();t /= times;std::cout << "迭代器方法每运行"<< times << "次平均耗时:" << t << "毫秒。" << endl;t = static_cast<double>(getTickCount());for (int i{ 0 }; i < times; ++i){Mat clone_i{ I.clone() };ScanImageAndReduceRandomAccess(clone_i, table);}t = 1000 * (static_cast<double>(getTickCount()) - t) / getTickFrequency();t /= times;std::cout << "坐标方法每运行"<< times << "次平均耗时:" << t << "毫秒。" << endl;//! [table-init]Mat lookUpTable(1, 256, CV_8U);uchar* p{ lookUpTable.ptr() };for (int i{ 0 }; i < 256; ++i)p[i] = table[i];//! [table-init]t = static_cast<double>(getTickCount());for (int i{ 0 }; i < times; ++i)//! [table-use]LUT(I, lookUpTable, J);//! [table-use]t = 1000 * (static_cast<double>(getTickCount()) - t) / getTickFrequency();t /= times;std::cout << "LUT方法每运行 "<< times << "次平均耗时:" << t << "毫秒。" << endl;return 0;
}//! [scan-c]
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{// accept only char type matricesCV_Assert(I.depth() == CV_8U);int channels{ I.channels() };int nRows{ I.rows };int nCols{ I.cols * channels };if (I.isContinuous()){nCols *= nRows;nRows = 1;}int i, j;uchar* p;for (i = 0; i < nRows; ++i){p = I.ptr<uchar>(i);for (j = 0; j < nCols; ++j){p[j] = table[p[j]];}}return I;
}
//! [scan-c]//! [scan-iterator]
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{// accept only char type matricesCV_Assert(I.depth() == CV_8U);const int channels{ I.channels() };switch (channels){case 1:{MatIterator_<uchar> it, end;for (it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)*it = table[*it];break;}case 3:{MatIterator_<Vec3b> it, end;for (it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it){(*it)[0] = table[(*it)[0]];(*it)[1] = table[(*it)[1]];(*it)[2] = table[(*it)[2]];}}}return I;
}
//! [scan-iterator]//! [scan-random]
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{// accept only char type matricesCV_Assert(I.depth() == CV_8U);const int channels{ I.channels() };switch (channels){case 1:{for (int i{ 0 }; i < I.rows; ++i)for (int j{ 0 }; j < I.cols; ++j)I.at<uchar>(i, j) = table[I.at<uchar>(i, j)];break;}case 3:{Mat_<Vec3b> _I = I;for (int i{ 0 }; i < I.rows; ++i)for (int j{ 0 }; j < I.cols; ++j){_I(i, j)[0] = table[_I(i, j)[0]];_I(i, j)[1] = table[_I(i, j)[1]];_I(i, j)[2] = table[_I(i, j)[2]];}I = _I;break;}}return I;
}
//! [scan-random]
要调试程序,需要输入参数的main函数。在VS中,可以在项目属性中提前输入参数,如下图中黑体的th.jpg 10,就是用空格隔开的两个参数。注意第一个参数可以不用输入,默认为项目程序名。
我这里使用的th.jpg,是一个1920*1200的图片。这是为了测试处理比较大的图片的时候各种方法的性能。
调试运行结果为:
结论
从运行结果可以看到用时最短的是LUT方法,这是因为OpenCV库使用了多线程方法加快了运行速度。但这并不代表LUT方法永远是最好的,其他方法的优缺点如下:
- 给简单的小图片写扫描程序的时候,用C风格的数组方法更好,因为没必要动用多线程;
- 迭代器方法更安全,但是相对较慢
- 坐标的方法需要获取动态引用,是在调试模式中耗时最多的方法,但是在发行模式中可能会比迭代器方法更快;不过肯定没有迭代器方法安全
** 文章较长,不免有遗漏或笔误,欢迎大家指正!**
相关文章:

【OpenCV C++20 学习笔记】扫描图片数据
扫描图片数据 应用情景图像数据扫描的难点颜色空间缩减(color space reduction)查询表 扫描算法计算查询表统计运算时长连续内存3种扫描方法C风格的扫描方法迭代器方法坐标方法LUT方法 算法效率对比结论 应用情景 图像数据扫描的难点 在上一篇文章《基…...

LeetCode:爬楼梯(C语言)
1、问题概述:每次可以爬 1 或 2 个台阶。有多少种不同的方法可以爬到楼顶 2、示例 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. 2 阶 示例 2: 输入:n 3 输出&a…...

银河麒麟(arm64)环境下通过docker安装postgis3,并实现数据整体迁移
银河麒麟(arm64)环境下通过docker安装postgis3,并实现数据整体迁移 硬件配置:麒麟9006C 系统环境:银河麒麟桌面版v10 sp1 数据库:postgresql11+postgis3.0 具体的步骤参考https://blog.csdn.net/qq_34817440/article/details/103914574 -----主要操作-----------------…...

C语言 | Leetcode C语言题解之第278题第一个错误的版本
题目: 题解: int firstBadVersion(int n) {int left 1, right n;while (left < right) { // 循环直至区间左右端点相同int mid left (right - left) / 2; // 防止计算时溢出if (isBadVersion(mid)) {right mid; // 答案在区间 [left, mid] 中…...

京东科技集团将在香港发行与港元1:1挂钩的加密货币稳定币
据京东科技集团旗下公司京东币链科技(香港)官网信息,京东稳定币是一种基于公链并与港元(HKD) 1:1挂钩的稳定币,将在公共区块链上发行,其储备由高度流动且可信的资产组成,这些资产安全存放于持牌金融机构的独立账户中,通…...

Vue 实现电子签名并生成签名图片
目录 前言项目结构代码实现 安装依赖创建签名画布组件生成签名图片 总结相关阅读 1. 前言 电子签名在现代Web应用中越来越普遍,例如合同签署、确认表单等。本文将介绍如何使用Vue.js实现一个简单的电子签名功能,并将签名生成图片。 2. 项目结构 项…...

Visual Studio 2022美化
说明: VS版本:Visual Studio Community 2022 背景美化 【扩展】【管理扩展】搜索“ClaudiaIDE”,【下载】,安装完扩展要重启VS 在wallhaven下载壁纸图片作为文本编辑器区域背景图片 【工具】【选项】搜索ClaudiaIDEÿ…...

[CISCN2019 华东南赛区]Web11
进来先做信息收集,右上角显示当前ip,然后有api的调用地址和请求包的格式以及最重要的是最下面的smarty模版,一看到这个就得想到smarty模版注入 测试了一下两个api都无法访问 直接切到数据包看看能不能通过XFF来修改右上角ip 成功修改&#x…...

【图形图像-1】SDF
在图形图像处理中,SDF(Signed Distance Field,带符号的距离场)是一种表示图形轮廓和空间距离的数学结构。它通常用于计算机图形学、文本渲染、碰撞检测和物理模拟等领域。 SDF(Signed Distance Field,带符号…...

苍穹外卖01
0. 配置maven (仅一次的操作 1.项目导入idea 2. 保证nginx服务器运行 (nginx.exe要在非中文的目录下) 开启服务: start nginx 查看任务进程是否存在: tasklist /fi "imagename eq nginx.exe" 关闭ngi…...

ElasticSearch(三)—文档字段参数设置以及元字段
一、 字段参数设置 analyzer: 指定分词器。elasticsearch 是一款支持全文检索的分布式存储系统,对于 text类型的字段,首先会使用分词器进行分词,然后将分词后的词根一个一个存储在倒排索引中,后续查询主要是针对词根…...

ARM功耗管理之压力测试和PM_DEBUG实验
安全之安全(security)博客目录导读 ARM功耗管理精讲与实战汇总参见:Arm功耗管理精讲与实战 思考:睡眠唤醒实验?压力测试?Suspend-to-Idle/RAM/Disk演示? 1、实验环境准备 2、软件代码准备 3、唤醒源 4、Suspend-…...

ESP8266用AT指令实现连接MQTT
1准备工作 硬件(ESP8266)连接电脑 硬件已经烧入了MQTT透传固件 2实现连接 2-1(进入AT模式) 打开串口助手发送如下指令 AT 2-2(复位) ATRST 2-3(开启DHCP,自动获取IP&#x…...

人工智能与机器学习原理精解【5】
文章目录 最优化基础理论特征值(Eigenvalue)特征向量(Eigenvector)特征值和特征向量的重要性计算方法特征值一、特征值分解的定义二、特征值分解的算法三、特征值分解的例子 正定矩阵Hessian矩阵的特征值Hessian矩阵的含义Hessian…...

为什么用LeSS?
实现适应性 LeSS是一个产品开发的组织系统,旨在最大化一个组织的适应性。关于适应性(或者敏捷性,也就是敏捷开发的初衷)我们是指优化: 以相对低的成本改变方向的能力,主要是基于通过频繁交付产生的探索。从…...

力扣高频SQL 50题(基础版)第七题
文章目录 力扣高频SQL 50题(基础版)第七题1068. 产品销售分析 I题目说明思路分析实现过程准备数据:实现方式:结果截图:总结: 力扣高频SQL 50题(基础版)第七题 1068. 产品销售分析 I 题目说明 …...

【音视频】一篇文章区分直播与点播、推流与拉流
文章目录 前言直播和点播的概念及区别直播是什么点播是什么 直播和点播的区别举例说明推流与拉流推流是什么拉流是什么 推流与拉流的区别举例说明 总结 前言 在音视频领域,直播、点播、推流和拉流是常见的概念,每个术语都有其特定的含义和应用场景。了解…...

3d动画软件blender如何汉化?(最新版本4.2)
前言 Blender是一个非常强大的3d动画软件,总能受到大量工作者的青睐。 但是,对于新手来说(尤其是英语学渣),语言是个难事。大部分blender打开时都是英文,对新手使用具有一定的障碍。因此,我们需…...

C++学习笔记04-补充知识点(问题-解答自查版)
前言 以下问题以Q&A形式记录,基本上都是笔者在初学一轮后,掌握不牢或者频繁忘记的点 Q&A的形式有助于学习过程中时刻关注自己的输入与输出关系,也适合做查漏补缺和复盘。 本文对读者可以用作自查,答案在后面࿰…...

Vue el-table的自定义排序返回值为null,设置刷新页面保持排序标志,导航时elementui组件不更新
自定义排序使用sort-change"sortChange"监听,表列需设置为sortable“custom”(自定义) <el-table:data"tableData"bordersort-change"sortChange":default-sort"{prop:sortProp,order:sortOrder}&quo…...

一起笨笨的学C ——16链表基础
目录 目录 前言 正文 链表定义: 基本创建链表程序: 链表结点插入: 对角线记忆法: 画图理解法: 链表结点删除: 链表销毁: 后语 前言 链表理解方法分享,愿你的大脑也能建立一个…...

信息学奥赛一本通1917:【01NOIP普及组】装箱问题
1917:【01NOIP普及组】装箱问题 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 4178 通过数: 2473 【题目描述】 有一个箱子容量为VV(正整数,0≤V≤200000≤V≤20000),同时有n个物品(0≤n≤300≤n≤30),…...

android user 版本如何手动触发dump
项目需要在android user版本增加手动触发dump方法,用以确认user版本发生dump后系统是重启还是真正发生dump卡机! 本文以qcom平台项目为例描述所做的修改,留下足迹以备后忘。 闲言少叙,开整上干货: 一、修改bin文件 …...

RedHat Linux 7.5 安装 mssql-server
RedHat Linux 7.5 安装 mssql-server 1、安装部署所需的依赖包 [rootlocalhost ~]# yum -y install libatomic bzip2 gdb cyrus-sasl cyrus-sasl-gssapi Loaded plugins: ulninfo Resolving Dependencies --> Running transaction check ---> Package bzip2.x86_64 0:1…...

Vue的SSR和预渲染:提升首屏加载速度与SEO效果
引言 在现代Web应用开发中,首屏加载速度和搜索引擎优化(SEO)是衡量应用性能的重要指标。Vue.js 作为流行的前端框架,提供了服务器端渲染(SSR)和预渲染(prerendering)两种技术来提升这些指标。本文将深入探讨如何使用 Vue 的 SSR 和预渲染技术,提供详细的代码示例和最…...

若依ruoyi+AI项目二次开发(智能售货机运营管理系统)
(一) 帝可得 - 产品原型 - 腾讯 CoDesign (qq.com)...

【SpringBoot】 4 Thymeleaf
官网 https://www.thymeleaf.org/ 介绍 Thymeleaf 是一个适用于 Web 和独立环境的现代服务器端 Java 模板引擎。 模板引擎:为了使用户界面和业务数据分离而产生的,它可以生成特定格式的文档,用于网站的模板引擎会生成一个标准的 html 文档…...

动静资源的转发操作
目录 Nginx中的location指令 静态资源的转发 动态资源的转发 注意事项 深入研究 如何在Nginx中实现对特定后缀文件的静态资源进行反向代理? Nginx中location指令的优先级是怎样确定的? 为什么在使用proxy_pass时要区分是否带有斜杠? N…...

Windows系统安全加固方案:快速上手系统加固指南(上)
无论是个人用户、小型企业还是大型机构,都需要采取措施保护其计算机系统免受各种威胁、系统加固常见的应用场景有个人用户、 AWD 比赛、公共机构以及企业环境等等 文档目录 一、Windows常用命令二、Windows常见端口三、账户安全3.1 默认账户安全3.2 按照用户分配账户…...

git连接远程仓库
一、本地新建代码,上传到远程仓库 1.git init #初始化本地仓库 2.git remote -v #查看当前仓库的远程地址 3.git remote add origin 远程仓库的URL 4.git branch master / git branch dev 创建 主分支或者 dev 分支 5.git checkout master/dev. 切换到主分支或者dev 分支…...