智能路面裂缝检测:基于YOLO和深度学习的全流程实现
引言
路面裂缝检测是维护道路质量和延长道路寿命的重要手段。传统的检测方法往往费时费力且易受人为因素影响。为了提高检测效率和准确性,本文介绍了一种基于深度学习的路面裂缝检测系统。该系统包括用户界面,利用YOLO(You Only Look Once)v8/v7/v6/v5模型进行路面裂缝检测,并提供了完整的实现步骤和详细代码。
系统架构
- 环境搭建
- 数据收集和预处理
- 模型训练
- 系统实现
- 用户界面设计
目录
系统架构
环境搭建
安装基础依赖
安装深度学习框架
安装用户界面库
验证安装
数据收集和预处理
数据集
数据标注
模型训练
配置YOLO数据集
模型训练代码
系统实现
路面裂缝检测
用户界面设计
安装PyQt5
界面代码
结论与声明
环境搭建
在开始实现路面裂缝检测系统之前,我们需要搭建一个合适的开发环境。本文假设使用Python 3.8或以上版本。
安装基础依赖
首先,安装基础的Python依赖包:
pip install numpy pandas matplotlib opencv-python
安装深度学习框架
我们使用YOLO模型进行路面裂缝检测,因此需要安装相关的深度学习框架,如PyTorch或TensorFlow。本文使用PyTorch和Ultralytics的YOLO库
pip install torch torchvision torchaudio
pip install ultralytics
安装用户界面库
为了实现用户界面,本文使用PyQt5。
pip install PyQt5
验证安装
确保所有包都安装成功,可以通过以下命令验证:
import torch
import cv2
import PyQt5
import ultralyticsprint("All packages installed successfully.")
数据收集和预处理
数据集
为了训练一个高精度的路面裂缝检测模型,我们需要一个包含各种路面及其裂缝图片的数据集。可以使用以下途径收集数据:
- 公开数据集:如Kaggle上的相关数据集。
- 自定义数据集:通过无人机或车辆采集路面图像。
数据标注
使用工具如LabelImg对数据进行标注。标注内容包括裂缝的位置(bounding box)和标签(裂缝)。
# 训练数据集文件结构示例
dataset/├── images/│ ├── train/│ └── val/└── labels/├── train/└── val/
模型训练
YOLO模型有多个版本,本文选取YOLOv8作为示范,其他版本可以通过相似方法实现。
配置YOLO数据集
首先,创建一个YAML文件来配置数据集信息:
# dataset.yaml
train: path/to/train/images
val: path/to/val/imagesnc: 1
names: ['Crack']
模型训练代码
使用YOLOv8进行模型训练,假设数据已经按照YOLO的格式进行预处理和标注。
from ultralytics import YOLO# 加载预训练的YOLOv8模型
model = YOLO('yolov8.yaml')# 配置训练参数
model.train(data='path/to/dataset.yaml', epochs=50, imgsz=640, batch=16)# 保存训练后的模型
model.save('best.pt')
系统实现
路面裂缝检测
利用训练好的模型进行路面裂缝检测,并实现视频流的实时检测。
import cv2
from ultralytics import YOLO# 加载训练好的模型
model = YOLO('best.pt')# 打开视频流
cap = cv2.VideoCapture('path/to/video.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 检测路面裂缝results = model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']# 画框和标签cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 显示视频cv2.imshow('Road Crack Detection', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()
用户界面设计
用户界面采用PyQt5实现,提供视频播放和路面裂缝检测结果显示。
安装PyQt5
pip install PyQt5
界面代码
import sys
from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QLabel, QPushButton, QFileDialog
from PyQt5.QtGui import QPixmap, QImage
import cv2
from ultralytics import YOLOclass RoadCrackUI(QWidget):def __init__(self):super().__init__()self.initUI()self.model = YOLO('best.pt')def initUI(self):self.setWindowTitle('Road Crack Detection System')self.layout = QVBoxLayout()self.label = QLabel(self)self.layout.addWidget(self.label)self.button = QPushButton('Open Video', self)self.button.clicked.connect(self.open_video)self.layout.addWidget(self.button)self.setLayout(self.layout)def open_video(self):options = QFileDialog.Options()video_path, _ = QFileDialog.getOpenFileName(self, "Open Video", "", "All Files (*);;MP4 Files (*.mp4)", options=options)if video_path:self.detect_cracks(video_path)def detect_cracks(self, video_path):cap = cv2.VideoCapture(video_path)while cap.isOpened():ret, frame = cap.read()if not ret:breakresults = self.model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 将frame转换为QImageheight, width, channel = frame.shapebytesPerLine = 3 * widthqImg = QImage(frame.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped()self.label.setPixmap(QPixmap.fromImage(qImg))cv2.waitKey(1)cap.release()if __name__ == '__main__':app = QApplication(sys.argv)ex = RoadCrackUI()ex.show()sys.exit(app.exec_())
结论与声明
本文介绍了一个基于深度学习的路面裂缝检测系统,详细描述了从环境搭建、数据收集和标注、模型训练、系统实现到用户界面设计的全过程。通过结合YOLO模型和PyQt5,我们可以实现一个实时、精确的路面裂缝检测系统,为道路维护和管理提供有力支持。
声明:本次博客是简单的项目思路,如果有想要UI界面+YOLOv8/v7/v6/v5代码+训练数据集)可以联系作者
相关文章:

智能路面裂缝检测:基于YOLO和深度学习的全流程实现
引言 路面裂缝检测是维护道路质量和延长道路寿命的重要手段。传统的检测方法往往费时费力且易受人为因素影响。为了提高检测效率和准确性,本文介绍了一种基于深度学习的路面裂缝检测系统。该系统包括用户界面,利用YOLO(You Only Look Once&a…...
C++ unordered_map
1. unordered系列关联式容器 在C98 中, STL 提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 ,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,…...

PHP Switch 语句
PHP 中的 switch 语句是一种多路分支语句,它允许一个变量的值对多个代码块进行选择执行。这通常比使用多个 if...elseif...else 语句更清晰、更易于维护。下面将详细介绍 PHP 中 switch 语句的使用方法。 基本语法 switch (n) {case label1:// 如果 n label1&…...

electron 网页TodoList应用打包win桌面软件数据持久化
参考: electron 网页TodoList工具打包成win桌面应用exe https://blog.csdn.net/weixin_42357472/article/details/140648621 electron直接打包exe应用,打开网页上面添加的task在重启后为空,历史没有被保存,需要持久化工具保存之前…...

软件缺陷(Bug)、禅道
目录 软件缺陷的判定标准 软件缺陷的核心内容 构成缺陷的基本要素 缺陷报告 缺陷管理 缺陷的跟踪流程 项目管理工具--禅道 软件在使用过程中存在的任何问题(如:错误、异常等),都叫软件的缺陷,简称bug。 软件缺…...

MySQL客户端命令一节将.sql文件导入MySQL
MySql客户端命令 直接输入SQL语句 使用MySQL客户端连接到服务器之后,可以发送SQL语句到服务器执行,并且以;和\g, \G作为结束不同的结束方式显示内容有所不同** TIPS: ;和\g结尾以表格的形式显示结果\G以行的形式显示结果 在连接到服务器之后…...

[论文笔记] DCA(Dual Chunk Attention)
DCA(Dual Chunk Attention)是一种在自然语言处理模型中用来处理长文本的技术。传统的注意力机制(Attention)在处理长文本时可能会遇到效率和性能瓶颈,因为计算每个单词与其他所有单词之间的关系会随着文本长度的增加而…...

构建查询洞察 UI
本文字数:2631;估计阅读时间:7 分钟 作者:Bucky Schwarz 本文在公众号【ClickHouseInc】首发 我们最近发布了 Query Insights 的初步实现,为 ClickHouse Cloud 用户提供了一种便捷的方法来查看和解释查询日志。该功能对…...

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第五十九章 等待队列
i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...

35.【C语言】详解函数递归
目录: 定义 作用 例子1~3 拓展学习 趣味练习 1.定义:函数自己调用自己(递推回归) int main() {main()return 0; } 这样容易死循环,导致爆栈(Stack Overflow) 所以需要设立限制条件,使执行时越来越接近条…...

【机器学习】智驭未来:机器学习如何重塑制造业的转型与升级
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀目录 🔍1. 引言📒2. 机器学习重塑制造业生产流程🌸预测性维护:减少停机时间,提高设…...

Python爬虫(5) --爬取网页视频
文章目录 爬虫爬取视频指定url发送请求UA伪装请求页面 获取想要的数据解析定位定位音视频位置 存放视频完整代码实现总结 爬虫 Python 爬虫是一种自动化工具,用于从互联网上抓取网页数据并提取有用的信息。Python 因其简洁的语法和丰富的库支持(如 requ…...

【Unity】关于Luban的简单使用
最近看了下Luban导出Excel数据的方式,来记录下 【Unity】关于Luban的简单使用 安装Luban开始使用UnityLubanC# 扩展 安装Luban Luban文档:https://luban.doc.code-philosophy.com/docs/beginner/quickstart 1.安装dotnet sdk 8.0或更高版本sdk 2.githu…...

企业公户验证API如何使用JAVA、Python、PHP语言进行应用
在纷繁复杂的金融与商业领域,确保每笔交易的安全与合规是至关重要的。而企业公户验证API,正是这样一位默默守护的数字卫士,它通过智能化的手段,简化了企业对公账户验证流程,让繁琐的审核变得快捷且可靠。 什么是企业公…...

杰发科技Bootloader(2)—— 基于7840的Keil配置地址
序 在7840的sample代码里面有一个简单的Boot跳转APP的示例 PFlash地址从0开始 DFlash的地址从1000000开始 Boot解析 他的boot地址配置为0 Boot的代码主要是这几行,主要作用就是Flash的跳转 int main(void) {SystemClock_Config();InitDebug();printf("demo…...

cmd常用命令
在Windows操作系统中,CMD(Command Prompt)是一个强大的命令行工具,允许用户通过键入命令来执行各种系统级操作。以下是一些常用的CMD命令及其功能: 文件与目录管理 dir:显示当前目录下的文件和子目录列表。…...

PCIe 以太网芯片 RTL8125B 的 spec 和 Linux driver 分析备忘
1,下载 RTL8125B driver 下载页: https://www.realtek.com/Download/List?cate_id584 2,RTL8125B datasheet下载 下载页: https://file.elecfans.com/web2/M00/44/D8/poYBAGKHVriAHnfWADAT6T6hjVk715.pdf3, 编译driver 解压: $ tar xj…...

Python tkinter Menu菜单组件详解
好久没有更新了,今天我来领大家熟悉一下Menu组件 1.认识、了解Menu 什么是Menu menu组件是tkinter中的菜单组件,通过该组件,开发者可以为窗口设计菜单和工具栏等。(ttk还提供了treeview树形菜单,python遍历目录的两种…...

谷粒商城实战笔记-46-商品服务-API-三级分类-配置网关路由与路径重写
文章目录 一,准备工作1,新增一级菜单2,新增二级菜单 二,前端树形界面开发1,开发分类展示组件 三,远程调用接口获取商品分类数据1,远程调用2,路由配置 错误记录 本节的主要内容&#…...

简要了解sql注入
sql注入安全测试中危害 数据库中的数据,对数据库数据进行操作(查询、删除等);网站的权限,找到注入点后可后门写入; sql注入产生原理详细分析 可控变量,带入数据库查询,变量未存在…...

Java 扫雷游戏
程序分析 使用Java编写的扫雷游戏界面程序,主要内容总结如下: Frame类继承自JFrame,构建了扫雷游戏的界面。 包含文本框text、标签nowBomb和setBomb、按钮start、面板MenuPamel和bombPanel等组件。通过jbInit方法进行初始化设置,…...

vue3 命令运行窗口暴露网络地址,以及修改端口号
一般情况下这里的地址是隐藏的 这里加上 --host 可以暴露网络地址,再加上--port --8080 就可以将端口号修改为8080(修改后边的数字就可以修改为你想要的端口号)...

由CANoe自带协议栈在TCP断开连接时同时发送两条FIN报文引起的注意事项
在我写这篇文章CAPL如何在底层模拟TCP Server端断开TCP连接时,我发现了一个奇怪的现象。我为了使用CAPL组装报文的方式实现TCP Server断开连接的过程,插入一个网络节点作为Client端。为了让Client能够发起连接和发起断开连接,给网络节点配置了独立的TCP/IP Stack,也就是CAN…...

FastGPT部署和接入使用重排模型bce-reranker-base
bce-reranker简介 bce-reranker 是一种专门用于信息检索和自然语言处理领域中的重排序(reranking)模型。这种模型由北京智源人工智能研究院(BAAI)开发,是 BGE(BAAI General Embedding)系列的一部分。BGE 系列模型专注于提供通用的嵌入表示,而 bce-reranker 则更进一步…...

Android笔试面试题AI答之线程Handler、Thread(2)
答案仅供参考,来自 讯飞星火大模型 目录 1.Android多线程间通信和多进程之间通信有什么不同,分别怎么实现?2.请解释下在单线程模型中Message、Handler、Message Queue、Looper之间的关系?3.Android 线程间通信有哪几种方式?4.子线程发消息…...

某某物联rabbitmqhttp二轮充电桩协议充电协议对接
对接方式概述: 1)请求采用 http 协议方式,推送数据采用 amqp(默认 rabbitmq)点对点消息队 列方式。 2)消息队列连接信息,需贵方完善。 1 hostIp: 2 virtualHost: 3 userName: 4 pass…...

黑马JavaWeb企业级开发(知识清单)03——HTML实现正文:排版(音视频、换行、段落)、布局标签(div、span)、盒子模型
文章目录 前言一、正文排版1. 视频标签: < video >2. 音频标签: < audio >3. 换行标签: < br >4. 段落标签 < p >5. vscode实现 二、布局1. 盒子模型2. 布局标签< div >和< span >3. VScode实现 三、源代码和运行结果总结 前言 本篇文章是…...

Java | Leetcode Java题解之第283题移动零
题目: 题解: class Solution {public void moveZeroes(int[] nums) {int n nums.length, left 0, right 0;while (right < n) {if (nums[right] ! 0) {swap(nums, left, right);left;}right;}}public void swap(int[] nums, int left, int right)…...

Django REST Framework(十三)视图集-GenericViewSet
Django REST Framework 中,ModelViewSet 和 ReadOnlyModelViewSet 提供了快速实现常见视图操作的便捷方法。它们分别继承自 GenericViewSet 并组合了多个 Mixin 类,使得视图的编写变得更加简单。 ModelViewSet ModelViewSet 继承自 GenericViewSet&…...

《0基础》学习Python——第二十四讲__爬虫/<7>深度爬取
一、深度爬取 深度爬取是指在网络爬虫中,获取网页上的所有链接并递归地访问这些链接,以获取更深层次的页面数据。 通常,一个简单的爬虫只会获取到初始页面上的链接,并不会进一步访问这些链接上的其他页面。而深度爬取则会不断地获…...