Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤:
-
安装 NetworkX:
pip install networkx -
创建图:
NetworkX 支持多种类型的图,包括无向图、有向图、加权图等。import networkx as nx# 创建一个无向图 G = nx.Graph()# 添加节点 G.add_node(1) G.add_nodes_from([2, 3, 4])# 添加边 G.add_edge(1, 2) G.add_edges_from([(2, 3), (3, 4), (4, 1)]) -
读取和写入图:
可以从各种格式读取图数据或将图数据写入文件。# 从边列表文件读取图 G = nx.read_edgelist('path_to_edgelist.txt')# 将图写入边列表文件 nx.write_edgelist(G, 'path_to_output_edgelist.txt') -
绘制图:
使用 Matplotlib 库绘制图。import matplotlib.pyplot as plt# 绘制图 nx.draw(G, with_labels=True) plt.show() -
基本网络分析:
计算基本属性:
# 节点数量和边数量 num_nodes = G.number_of_nodes() num_edges = G.number_of_edges()# 度(每个节点的连接数) degrees = dict(G.degree())print(f'节点数量: {num_nodes}, 边数量: {num_edges}') print(f'节点度: {degrees}')计算路径和中心性:
# 最短路径 shortest_path = nx.shortest_path(G, source=1, target=3) print(f'节点1到节点3的最短路径: {shortest_path}')# 度中心性 degree_centrality = nx.degree_centrality(G) print(f'度中心性: {degree_centrality}')# 介数中心性 betweenness_centrality = nx.betweenness_centrality(G) print(f'介数中心性: {betweenness_centrality}')# 特征向量中心性 eigenvector_centrality = nx.eigenvector_centrality(G) print(f'特征向量中心性: {eigenvector_centrality}') -
高级网络分析:
社区发现:
使用 NetworkX 提供的算法或集成其他库(如community)进行社区发现。import community as community_louvain# 计算社区 partition = community_louvain.best_partition(G) print(f'社区划分: {partition}')图的连通性和子图:
# 判断图是否连通 is_connected = nx.is_connected(G) print(f'图是否连通: {is_connected}')# 找到图中的所有连通子图 subgraphs = [G.subgraph(c).copy() for c in nx.connected_components(G)] for i, sg in enumerate(subgraphs):print(f'连通子图{i}: 节点 - {sg.nodes()}, 边 - {sg.edges()}') -
应用案例:
社交网络分析:
# 构建社交网络图 social_network = nx.Graph() social_network.add_edges_from([('Alice', 'Bob'),('Alice', 'Charlie'),('Bob', 'Charlie'),('Bob', 'David'),('Charlie', 'David') ])# 绘制社交网络图 nx.draw(social_network, with_labels=True) plt.show()# 计算社交网络的基本属性 print(f'节点数量: {social_network.number_of_nodes()}') print(f'边数量: {social_network.number_of_edges()}') print(f'度中心性: {nx.degree_centrality(social_network)}')
这些步骤和示例代码展示了如何使用 NetworkX 进行复杂网络分析。根据你的具体需求,可以进一步扩展和定制这些分析方法。如果你有特定的网络分析问题或更复杂的应用场景,可以进一步探讨。
相关文章:
Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤: 安装 NetworkX: pip inst…...
【C#/C++】C#调C++的接口,给C++传结构体数组
C#调C的接口,给C传结构体数组 1、背景2、实现 1、背景 C#软件创建了一个结构体数组用来存储图像的区域信息,分别是矩形框的左上像素的xy坐标和矩形框右下像素的xy坐标。需要传入给调用的C函数的参数列表中,我们选择使用C#传入一个结构体数组…...
ctfshow SSTI注入 web369--web372
web369 这把request过滤了,只能自己拼字符了 ""[[__clas,s__]|join] 或者 ""[(__clas,s__)|join] 相当于 ""["__class__"]举个例子,chr(97) 返回的是字符 a,因为 97 是小写字母 a 的 Unicode 编码…...
Llama + Dify,在你的电脑搭建一套AI工作流
theme: smartblue 点赞 关注 收藏 学会了 本文简介 最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。 那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了&…...
洛谷 P9854 [CCC 2008 J1] Body Mass Index
这题让我们计算出 BMI 值,随后判断属于哪个等级。 BMI 值计算公式: 。 BMI 范围 对应信息 …...
Redis面试三道题目
针对Redis的面试题,我将从简单到困难给出三道题目,并附上参考答案的概要。 1. 简单题:请简述Redis是什么,以及它的主要优点。 参考答案: Redis简介:Redis是一个开源的、使用ANSI C语言编写、支持网络、可…...
redis的使用场景-分布式锁
使用redis的setnx命令放入数据并用此数据当锁完成业务(但是如果用户操作途中出现异常导致超出指定时间会出现问题) Service public class StockService {Autowiredprivate StockDao stockDao; //mapper注入Autowiredprivate StringRedisTemplate redisT…...
知识库系统全解析:2024年最佳9款
本文将分享9款优质团队知识库管理工具:PingCode、Worktile、石墨文档、语雀、Wolai 我来、有道云笔记、飞书文档、Confluence、Notion。 在追求高效团队运作的今天,掌握和整合知识成为了企业不可或缺的需求。但面对市场上琳琅满目的知识库管理工具&#…...
猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn() 摘要 Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示…...
QT 关于QTableWidget的常规使用
目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…...
PyCharm 常用 的插件
Material Theme UI Lite:提供多种不同的页面风格,为PyCharm界面增添个性化元素。Chinese (Simplified) Language Pack:为中文用户提供简体中文的界面、菜单、提示信息,提升使用体验。Tabnine:基于人…...
理解 HTTP 请求中 Query 和 Body 的异同
本文将深入探讨HTTP请求中的两个关键要素:查询参数(Query)和请求体(Body)。我们将阐明它们之间的差异,并讨论在何种情况下使用每一种。 HTTP 请求概述 HTTP 请求是客户端(如浏览器)…...
【AI大模型】 企业级向量数据库的选择与实战
前言 ChatGPT4相比于ChatGPT3.5,有着诸多不可比拟的优势,比如图片生成、图片内容解析、GPTS开发、更智能的语言理解能力等,但是在国内使用GPT4存在网络及充值障碍等问题,如果您对ChatGPT4.0感兴趣,可以私信博主为您解决账号和环境…...
LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning)
要掌握LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning),你需要理解整个过程从数据准备到最终部署的各个环节。下面是这一流程的一个概览,并提供了一些关键步骤和技术点: 1. LangChain开发框架简介 La…...
VMware安装(有的时候启动就蓝屏建议换VM版本)
当你开始使用虚拟化技术来管理和运行多个操作系统时,VMware 是一个强大且广泛使用的选择。本篇博客将指导你如何安装 VMware Workstation Pro,这是一个功能强大的虚拟机软件,适用于个人和专业用户。 一、下载 VMware Workstation Pro 访问官网…...
AV1技术学习:Quantization
量化是对变换系数进行,并将量化索引熵编码。AV1的量化参数 QP 的取值范围是0 ~ 255。 一、Quantization Step Size 在给定的 QP 下,DC 系数的量化步长小于 AC 系数的量化步长。DC 系数和 AC 系数从 QP 到量化步长的映射如下图所示。当 QP 为 0 时&…...
vllm部署记录
1. pip安装 pip install vllm 下载模型在huggingface.co 注意在modelscope上的这个opt-125m好像不行了,我git不下来报错 启动服务 vllm serve opt-125m --model opt-125m --port 8888 第一个opt-125m是名字,可以在vllm支持的模型中查到,第二个是模型存放文件夹及其路径…...
HTML前端 盒模型及常见的布局 流式布局 弹性布局 网格布局
CSDN的文章没有“树状目录管理”,所以我在这里整理几篇相关的博客链接。 操作有些麻烦。 CSS 两种盒模型 box-sizing content-box 和 border-box 流式布局 flow layout 弹性布局 flex layout HTML CSS 网格布局 grid layout HTML CSS...
网络安全 DVWA通关指南 DVWA Command Injection(命令注入)
DVWA Command Injection(命令注入) 文章目录 DVWA Command Injection(命令注入)LowMediumHighImpossible Low 1、分析网页源代码 <?php// 当表单提交按钮(Submit)被触发时执行以下代码 if (isset($_P…...
VUE3学习第三篇:报错记录
1、在我整理好前端代码框架后,而且也启动好了对应的后台服务,访问页面,正常。 2、报错ReferenceError: defineModel is not defined 学到这里报错了 在vue网站的演练场,使用没问题 但是在我自己的代码里就出问题了 3、watchEffec…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
【图片转AR场景】Tripo + Blender + Kivicube 实现图片转 AR 建模
总览 1.将 2D 图片转为立体建模 2. 3. 一、将 2D 图片转为立体建模 1.工具介绍 Tripo 网站 2.找图片 找的图片必须是看起来能够让 AI 有能力识别和推理的,因为现在的AI虽然可以补全但是能力还没有像人的想象力那么丰富。 比如上面这张图片,看起来虽…...
React 进阶特性
1. ref ref 是 React 提供的一种机制,用于访问和操作 DOM 元素或 React 组件的实例。它可以用于获取某个 DOM 元素的引用,从而执行一些需要直接操作 DOM 的任务,例如手动设置焦点、选择文本或触发动画。 1.1. 使用 ref 的步骤 1. 创建一个 ref:使用 React.createRef 或 …...
