卷积神经网络(五)---图像增强的方法
前面的部分专注于卷积神经网络的层结构介绍,同时还介绍了到目前为止比较出名的卷积神经网络,接着使用比较复杂的卷积神经网络提高了 MNIST 数据集的准确率。下面将从另外的角度——图像增强的方面入手,提高模型的准确率和泛化能力。
一直以来,图像识别这一计算机视觉的核心问题都面临很多挑战,同一个物体在不同情况下都会得出不同的结论。
对于一张照片,我们看到的是一些物体,而对于计算机而言,它看到的是一些像素点,如图 4.23所示。

如果拍摄照片的照相机位置发生了改变,那么拍得的图片对于我们而言,变化很小,但是对于计算机而言,图片的像素变化是很大的。拍照时的光照条件也是很重要的一个影响因素:光照太弱,照片里的物体会和背景融为一体,它们的像素点就会很接近,计算机就无法正确识别出物体,如图4.24所示。

除此之外,物体本身的变形也会对计算机识别造成障碍,比如一只猫是趴着的,计 算机能够识别它,但如果猫换了一个姿势,变成躺着的状态,那么计算机就无法识别了,如图 4.25所示。

最后,物体本身会隐藏在一些遮蔽物中,这样物体只呈现局部的信息,计算机也难以识别,如图4.26所示。

针对这些问题,我们希望能够对原始图片进行增强,在一定程度上解决部分问题在 PyTorch 中已经内置了一些图像增强的方法,不需要再繁琐地去实现,只需要简单的调用。
torchvision.transforms 包括所有图像增强的方法。
- 第一个函数是 Scale,对图片的尺度进行缩小和放大;
- 第二个函数是 CenterCrop,对图像正中心进行给定大小的裁剪;
- 第三个函数是 RandomCrop,对图片进行给定大小的随记裁剪;
- 第四个函数是 RandomHorizaontalFlip,对图片进行概率为 0.5 的随机水平翻转;
- 第五个函数是 RandomSizedCrop,首先对图片进行随机尺寸的裁剪,然后对裁剪的图片进行一个随机比例的缩放,最后将图片变成给定的大小,这在 InceptionNet 中比较流行;
- 最后一个是 Pad,对图片进行边界零填充。
上面介绍了 PyTorch 内置的一些图像增强的方法,还有更多的增强方法,可以使用 OpenCV或者 PIL 等第三方图形库实现。在网络的训练中图像增强是一种常见、默认的做法,对多任务进行图像增强之后都能够在一定程度上提升任务的准确率。
相关文章:
卷积神经网络(五)---图像增强的方法
前面的部分专注于卷积神经网络的层结构介绍,同时还介绍了到目前为止比较出名的卷积神经网络,接着使用比较复杂的卷积神经网络提高了 MNIST 数据集的准确率。下面将从另外的角度——图像增强的方面入手,提高模型的准确率和泛化能力。 一直以来…...
矩阵常见分解算法及其在SLAM中的应用
文章目录 常见特殊矩阵定义Cholesky分解(正定Hermittian矩阵,分解结果唯一)Cholesky分解应用 SVD分解(将singularvalues排序后分解唯一)SVD 分解的应用(任意矩阵) QR分解(任意矩阵&a…...
【排序】快速排序详解
✨✨欢迎大家来到Celia的博客✨✨ 🎉🎉创作不易,请点赞关注,多多支持哦🎉🎉 所属专栏:排序 个人主页:Celias blog~ 一、快速排序的思想 快速排序的核心思想是: 选定一个…...
贪心算法总结(2)
一、买卖股票的最佳时机 . - 力扣(LeetCode) class Solution { public:int maxProfit(vector<int>& prices) {int miniINT_MAX;int ret0;for(int&price:prices){//遍历的时候,我们随时去更新最小的值,然后让每一位…...
弘景光电:技术实力与创新驱动并进
在光学镜头及摄像模组产品领域,广东弘景光电科技股份有限公司(以下简称“弘景光电”)无疑是一颗耀眼的明星。自成立以来,弘景光电凭借其强大的研发实力、卓越的产品性能、精密的制造工艺以及严格的质量管理体系,在光学…...
2024年7月23日~2024年7月29日周报
目录 一、前言 二、完成情况 2.1 一种具有边缘增强特点的医学图像分割网络 2.2 融合边缘增强注意力机制和 U-Net 网络的医学图像分割 2.3 遇到的困难 三、下周计划 一、前言 上周参加了一些师兄师姐的论文讨论会议,并完成了初稿。 本周继续修改论文࿰…...
M3U8流视频数据爬虫
M3U8流视频数据爬虫 HLS技术介绍 现在大部分视频客户端都采用HTTP Live Streaming(HLS,Apple为了提高流播效率开发的技术),而不是直接播放MP4等视频文件。HLS技术的特点是将流媒体切分为若干【TS片段】(比如几秒一段…...
保护您的数字财富:模块化沙箱在源代码防泄露中的突破
在数字化浪潮中,企业面临着前所未有的数据安全挑战。源代码、商业机密、客户数据……这些宝贵的数字资产一旦泄露,后果不堪设想。SDC沙盒防泄密系统,以其卓越的技术实力和创新的解决方案,为企业提供了一个坚不可摧的安全屏障。 核…...
FFmpeg源码:avio_r8、avio_rl16、avio_rl24、avio_rl32、avio_rl64函数分析
一、引言 AVIOContext是FFmpeg(本文演示用的FFmpeg源码版本为5.0.3)中的字节流上下文结构体,用来管理输入输出数据。打开一个媒体文件的时候,需要先把数据从硬盘读到缓冲区,然后会用到AVIOContext中的如下成员&#x…...
如何使用 API 查看极狐GitLab 镜像仓库中的镜像?
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...
软件-vscode-plantUML-IDEA
文章目录 vscode基础命令 实操1. vscode实现springboot项目搭建 (包括spring data jpa和sqlLite连接) PlantUMLIDEA下载及安装Eval Reset插件配置修改IDEA创建项目的默认目录IDEA配置gitIDEA翻译插件translationIDEA断点调试IDEA全局搜索快捷键不能使用代…...
ES6语法详解,面试必会,通俗易懂版
目录 Set的基本使用WeakSet 使用Set 和 WeakSet 区别内存泄漏示例:使用普通 Set 保存 DOM 节点如何避免这个内存泄漏MapWeakMap 的使用 Set的基本使用 在ES6之前,我们存储数据的结构主要有两种:数组、对象。 在ES6中新增了另外两种数据结构&a…...
CTFshow--Web--代码审计
目录 web301 web302 web303 web304 web305 web306 web307 web308 web309 web310 web301 开始一个登录框, 下意识sql尝试一下 发现 1 的时候会到一个 checklogin.php 的路径下, 但啥也没有 好吧, 这是要审计代码的 ,下载好源码, 开始审计 看了一下源码 , 应该就是sql…...
Java语言程序设计——篇十(1)
🌿🌿🌿跟随博主脚步,从这里开始→博主主页🌿🌿🌿 接口介绍 接口概述接口定义接口的实现实战演练 👅接口的继承实战演练实战演练 接口的类型常量实战演练 静态方法默认方法解决默认方…...
Qt对比MFC优势
从Qt小白到现在使用了有四年的时间,之前也搞过MFC,WinForm,基本上都是桌面的框架, 从难易程度看MFC>QT>WinForm; 运行的效率上来看MFC>QT>WinForm; 开发效率上WinForm>QT>MFC; 跨平台Qt首选; 界面的美观难易程度Qt>…...
RuntimeError: No CUDA GPUs are available
RuntimeError: No CUDA GPUs are available 目录 RuntimeError: No CUDA GPUs are available 【常见模块错误】 【解决方案】 解决步骤如下: 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科…...
URL参数中携带中文?分享 1 段优质 JS 代码片段!
本内容首发于工粽号:程序员大澈,每日分享一段优质代码片段,欢迎关注和投稿! 大家好,我是大澈! 本文约 800 字,整篇阅读约需 1 分钟。 今天分享一段优质 JS 代码片段,在发送 ajax 请…...
sass的使用
一、变量 //声明一个变量 $highlight-color: #F90; .selected {border: 1px solid $highlight-color; }//编译后 .selected {border: 1px solid #F90; }二、导入 import "xxx.scss"三、混合器简单定义 通过mixin定义,通过include调用 // mixin.scss /…...
【足球走地软件】走地数据分析预测【大模型篇】走地预测软件实战分享
了解什么是走地数据? 走地数据分析,在足球赛事的上下文中,是一种针对正在进行中的比赛进行实时数据分析的方法。这种方法主要用于预测比赛中的某些结果或趋势,如总进球数、比分变化、球队表现等。 在足球走地数据分析中…...
现在有什么赛道可以干到退休?
最近,一则“90后无论男女都得65岁以后退休”的消息在多个网络平台流传,也不知道是真是假,好巧不巧今天刷热点的时候又看到一条这样的热点:现在有什么赛道可以干到退休? 点进去看了几条热评,第一条热评说的…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
