当前位置: 首页 > news >正文

精准防控,高效管理:AI智能分析网关V4区域未停留检测算法的介绍及应用

一、区域未停留AI检测算法概述

随着人工智能和计算机视觉技术的飞速发展,区域未停留AI检测算法作为一种重要的视频分析技术,逐渐在各个领域得到广泛应用。该算法通过高效处理视频流数据,能够实时分析并判断目标对象是否在预设区域内有足够的停留时间,为安全管理和事件预防提供了有力支持。

TSINGSEE智能分析网关V4内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。算法可按需组合、按场景配置,每个摄像头可同时配置3路算法,支持摄像头轮询与算法轮询任务。智能分析网关V4区域未停留AI检测算法具体是指,有些区域要求人员经过时需停留规定的时间,如果停留未达到规定的时间则触发告警。

一旦检测到有目标在预设区域内未停留,系统会立即触发告警机制,通过声音、邮件、短信或直接在监控界面上弹出告警信息,通知相关人员。同时,系统还可以抓拍、录像,记录这些未停留事件,为后续的决策分析提供数据支持。

二、算法原理

1、图像采集与预处理

图像采集是算法运行的第一步,通常依赖于高清摄像头或监控摄像头网络,覆盖需要监控的区域。摄像头需具备良好的夜视能力和宽视角,以确保在各种光线条件下都能获取清晰、全面的视频画面。

采集到的原始视频数据首先进行预处理,包括去噪、增强对比度、调整帧率等,以提升后续处理的准确性和效率。此外,还可能进行视频帧的分割,将连续的视频流转换为一系列静态图像,便于后续的目标检测处理。

2、目标检测与跟踪

利用深度学习模型(如YOLO、SSD等)对预处理后的图像进行目标检测,快速识别出图像中的人体、车辆等目标对象,并标注其位置和大小。这些模型经过大量数据训练,具备高准确性和实时性。

在检测到目标后,采用目标跟踪算法(如SORT、DeepSORT等)对目标进行连续跟踪,即使目标在视频中出现遮挡、移动速度变化等情况,也能保持稳定的跟踪效果。这有助于构建目标对象在监控区域内的完整运动轨迹。

3、区域停留分析

此步骤是区域未停留检测的核心。根据预设的区域坐标和大小,算法将目标对象的运动轨迹与这些区域进行比对,计算目标在每个区域内的停留时间。如果停留时间低于预设阈值,则判断为目标未在该区域停留。

三、技术特点

  • 智能识别:相比传统的人工巡查和地感线圈等方式,AI算法能够自动识别目标并判断其是否未停留,降低了人工成本和误判率。
  • 全天候监测:算法可以实现24小时不间断的监测,无须额外的人力投入,提高了监管的效率和覆盖面。
  • 高准确性:通过深度学习算法训练,AI检测算法能够准确识别目标并判断其行为,提高了检测的准确性和可靠性。
  • 实时反馈与快速响应:一旦检测到未停留行为,算法能够立即生成告警信息并反馈到管理平台,实现快速响应和干预。

四、典型应用场景

  • 铁道作业:在上道作业人员穿越铁道开始工作前,为确认安全需停留并观察是否有车辆经过。若有上道作业人员违规作业(未停留),则触发警报并抓拍和记录违规行为。

随着技术的不断发展和完善,区域未停留AI检测算法将在更多领域发挥重要作用。同时,随着算法模型的不断优化和算力的提升,区域未停留AI检测算法的准确性和实时性将得到进一步提升,为安全管理和事件预防提供更加有力的支持。

相关文章:

精准防控,高效管理:AI智能分析网关V4区域未停留检测算法的介绍及应用

一、区域未停留AI检测算法概述 随着人工智能和计算机视觉技术的飞速发展,区域未停留AI检测算法作为一种重要的视频分析技术,逐渐在各个领域得到广泛应用。该算法通过高效处理视频流数据,能够实时分析并判断目标对象是否在预设区域内有足够的…...

html+css練習:iconfont使用

1.網址地址:https://www.iconfont.cn/search/index 2.註冊登錄,將需要的圖標添加到購物車 3.下載代碼 4.下載后的代碼有一個html頁面,裡面有詳細的使用方式...

算法导论 总结索引 | 第五部分 第二十一章:用于不相交集合的数据结构

一些应用涉及 将n个不同的元素分成一组不相交的集合。寻找包含给定元素的唯一集合 和 合并两个集合 1、不相交集合的操作 1、一个不相交集合 数据结构 维持了 一个不相交动态集的集合 S {S_1, S_2,…, S_n}。用一个代表 来标识每个集合,它是这个集合的某个成员。…...

【单例设计模式】揭秘单例模式:从原理到实战的全方位解析(开发者必读)

文章目录 深入理解单例设计模式:原理、实现与最佳实践引言第一部分:设计模式简介第二部分:单例模式定义第三部分:单例模式的优点和缺点第四部分:单例模式的实现方式懒汉式非线程安全的实现线程安全的实现(双…...

VTK8.2.0编译(Qt 5.14.2+VS2017)

VTK8.2.0编译(Qt 5.14.2VS2017) 关于Qt和MSVC的安装,可以参考文章(QtMSVC2017)。 本篇VTK在QtMSVC的配置下的编译。VTK 以8.2.0为例。 一、环境变量的配置 我们打开电脑的环境变量,可以看到没有Qt相关的…...

武汉流星汇聚:亚马逊跨境电商龙头,市场份额稳固,服务品质卓越

在全球跨境电商的版图上,亚马逊无疑是一颗璀璨的明星,以其庞大的市场规模、卓越的用户体验和强大的品牌影响力,稳居行业龙头地位。即便在诸多新兴跨境平台竞相崛起的背景下,亚马逊依然以其独特的优势,保持着难以撼动的…...

我出一道面试题,看看你能拿 3k 还是 30k!

大家好,我是程序员鱼皮。欢迎屏幕前的各位来到今天的模拟面试现场,接下来我会出一道经典的后端面试题,你只需要进行 4 个简单的选择,就能判断出来你的水平是新手(3k)、初级(10k)、中…...

opecv c++计算图像的曲率

公式 κ z x x ⋅ z y 2 − 2 ⋅ z x ⋅ z y ⋅ z x y z y y ⋅ z x 2 ( z x 2 z y 2 1 ) 3 / 2 \kappa \frac{z_{xx} \cdot z_y^2 - 2 \cdot z_x \cdot z_y \cdot z_{xy} z_{yy} \cdot z_x^2}{(z_x^2 z_y^2 1)^{3/2}}\newline κ(zx2​zy2​1)3/2zxx​⋅zy2​−2⋅zx​…...

鸿蒙 IM 即时通讯开发实践,融云 IM HarmonyOS NEXT 版

融云完成针对“纯血鸿蒙”操作系统的 SDK 研发,HarmonyOS NEXT 版融云 IM SDK 已上线,开发者可在“鸿蒙生态伙伴 SDK 市场”查询使用。 发挥 20 年通信行业技术积累和领创品牌效应,融云为社交、娱乐、游戏、电商、出行、医疗等各行业提供专业…...

【全国大学生电子设计竞赛】2022年D题

🥰🥰全国大学生电子设计大赛学习资料专栏已开启,限时免费,速速收藏~...

【优秀python案例】基于python爬虫的深圳房价数据分析与可视化实现

现如今,房价问题一直处于风口浪尖,房价的上涨抑或下跌都牵动着整个社会的利益,即便是政府出台各种政策方针也只能是暂时抑制楼市的涨势,对于需要买房的人来说,除了关注这些变化和政策外,还有一个非常头疼的…...

vscode安装与配置本地c/c++编译调试环境

目录 (1)安装vscode和常用插件 1.下载安装vscode 2.安装常用插件 (2)本地安装和配置编译器 1.安装编译器 2.vscode配置编译器 第1种:全局配置 第2种:为当前项目个性化配置 (3&#xff…...

PCIe学习笔记(15)

设备就绪状态 (Device Readiness Status,DRS)消息 (Device Readiness Status (DRS) 是PCIe规范中引入的一种机制,旨在改进设备初始化和就绪状态的检测与报告。 在以往的PCIe版本中,系统通常依赖于固定的超时机制来判断设备是否已…...

Rust中的特殊类型所占的内存大小

可以使用std::mem:size_of获取类型大小&#xff1a; use std::mem::size_of;struct Journal(String, u32); trait Summary {} impl Summary for Journal {}fn main() {println!("普通结构体相关&#xff1a;");println!("{}", size_of::<&Journal&…...

【深度学习】变分自编码器 VAE,什么是变分?(1)

文章目录 1. 变分自编码器 VAEVAE的基本概念VAE的数学原理编码器解码器目标函数训练过程代码示例未来发展2. 变分推断变分推断(Variational Inference)变分推断的基本概念变分推断的目标变分下界(Evidence Lower Bound, ELBO)最大化变分下界变分推断的步骤3. 必读内容1. 变…...

宏编程:C++宏、Rust宏和Lisp宏比较

根据simondobson两篇文章&#xff08;1、2&#xff09;&#xff0c;总结比较一下C宏 Rust宏和Lisp宏&#xff1a; Rust 宏&#xff1a;Rust 有两种类型的宏&#xff1a; 声明性宏&#xff1a;这些模式匹配参数来生成代码。 过程宏&#xff1a;这些宏执行从代码到代码的更一般…...

ChatGPT协助撰写研究论文的11种方法【全集】

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 当我们使用 ChatGPT 时&#xff0c;原本那些需要花费数小时、数天、有时甚至更长时间的任务现在只需几分钟甚至更短时间。 今天的分享&#xff0c;我们将谈谈 ChatGPT 在研究论文方面可…...

PEP 8 – Python 代码风格指南中文版(四)

何时使用尾随逗号 尾随逗号通常是可选的&#xff0c;但在创建一个只有一个元素的元组时是必须的。为了清晰起见&#xff0c;建议使用&#xff08;技术上多余的&#xff09;括号将其包围起来&#xff1a; # 正确的: FILES (setup.cfg,)# 错误的: FILES setup.cfg, 当尾随逗号…...

基于深度学习的适应硬件的神经网络

基于深度学习的适应硬件的神经网络设计旨在最大限度地利用特定硬件平台的计算和存储能力&#xff0c;提高模型的执行效率和性能。这些硬件包括图形处理单元&#xff08;GPU&#xff09;、张量处理单元&#xff08;TPU&#xff09;、现场可编程门阵列&#xff08;FPGA&#xff0…...

上传音频文件

思路 1、自定义Upload 重点&#xff1a;<input ref{inputRef} type"file" accept{accept} onClick{e > e.stopPropagation()} onChange{uploadFile} multiple{multiple}/> 使用input标签设置type是file&#xff0c;将input元素通过forwardRef暴露给父组件&…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...