当前位置: 首页 > news >正文

leetcode50. Pow(x, n),快速幂算法

leetcode50. Pow(x, n),快速幂算法

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:
输入:x = 2.10000, n = 3
输出:9.26100

示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

目录

  • leetcode50. Pow(x, n),快速幂算法
    • 总体思维导图
  • 快速幂算法详解
    • 算法背景
    • 算法原理
    • 算法步骤
    • 算法优势
    • 应用场景
    • 流程图
    • 具体代码
    • 算法分析
    • 相似题目

总体思维导图

在这里插入图片描述

快速幂算法详解

算法背景

快速幂算法是一种高效计算 x n x^n xn 的方法,特别适用于 n n n 非常大的情况。它基于幂的性质和二进制表示。

算法原理

  1. 二进制表示:任何整数 n n n 都可以用二进制表示。例如, 13 13 13 的二进制表示是 1101 1101 1101
  2. 幂的性质 x n x^n xn 可以分解为 x 2 0 × x 2 1 × x 2 2 × … x^{2^0} \times x^{2^1} \times x^{2^2} \times \ldots x20×x21×x22× 的形式。例如, x 13 x^{13} x13 可以分解为 x 1 × x 4 × x 8 x^{1} \times x^{4} \times x^{8} x1×x4×x8
  3. 位操作:通过检查 n n n 的二进制表示中的每一位,我们可以确定是否需要将对应的 x 2 k x^{2^k} x2k 乘入结果中。

算法步骤

  1. 初始化

    • 设置结果 res 为 1。
    • 将指数 n n n 转换为长整型 nn 以避免在负数时的整数溢出。
  2. 特殊情况处理

    • 如果 x = 1 x = 1 x=1,直接返回 x x x
    • 如果 x = − 1 x = -1 x=1,根据 n n n 的奇偶性返回 x x x − x -x x
    • 如果 n < 0 n < 0 n<0,将 n n nn nn 设为正数,并将 x x x 设为其倒数。
  3. 快速幂计算

    • 使用 while 循环,当 n n > 0 nn > 0 nn>0 时执行。
    • 如果 n n nn nn 的当前最低位为 1(nn & 1),则将 r e s res res 乘以 x x x
    • n n nn nn 右移一位(nn >>= 1),即除以 2。
    • x x x 平方(x = x * x)。
  4. 返回结果

    • n n nn nn 变为 0 时,返回 res

算法优势

  • 时间复杂度降低:传统的幂运算需要 O ( n ) O(n) O(n) 的时间复杂度,而快速幂算法只需要 O ( log ⁡ n ) O(\log n) O(logn)
  • 减少乘法操作:通过跳过不必要的乘法,算法减少了计算量。

应用场景

快速幂算法常用于需要高效率幂运算的场合,例如密码学、大数运算等。

这个算法的关键在于利用了二进制的性质和位操作,从而将一个复杂的幂运算问题转化为一系列更简单的乘法和位移操作。

流程图

开始
特殊情况处理
底数x是否为1
返回1
底数x是否为-1
根据n的奇偶性返回结果
指数n是否小于0
取反n, 取倒数x
初始化res=1
循环处理
检查n是否为奇数
res *= x
n >>= 1
x *= x
n是否大于0
返回res
结束

具体代码

class Solution {
public:double myPow(double x, int n) {double res=1;long long nn=(long long)n;if(x==1.00000){return x;}if(x==-1.00000){if(nn%2==1) return x;else return -x;}if(nn<0) {nn=-nn;x=1/x;}while(nn){if(nn&1) res*=x;nn>>=1;x=x*x;}return res;}
};

算法分析

  • 时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),因为每次循环 n n n 都至少减少一半。
  • 空间复杂度 O ( 1 ) O(1) O(1),只使用了常数空间。
  • 易错点:处理负指数和 x = − 1 x = -1 x=1 的情况时容易出错。
  • 注意点:使用 long long 类型处理大指数,防止整数溢出。

相似题目

下面是一些与快速幂算法相关的题目,您可能会感兴趣:

题目链接
Pow(x, n)LeetCode
Super PowLeetCode
Pow(x, n) IILintCode

这些题目都可以使用快速幂算法来解决。

相关文章:

leetcode50. Pow(x, n),快速幂算法

leetcode50. Pow(x, n)&#xff0c;快速幂算法 实现 pow(x, n) &#xff0c;即计算 x 的整数 n 次幂函数&#xff08;即&#xff0c;xn &#xff09;。 示例 1&#xff1a; 输入&#xff1a;x 2.00000, n 10 输出&#xff1a;1024.00000 示例 2&#xff1a; 输入&#xff…...

Xinstall神器来袭,轻松搞定CPA推广渠道统计!

在数字化营销日益盛行的今天&#xff0c;CPA&#xff08;按行动付费&#xff09;推广已成为众多企业营销的重要手段。然而&#xff0c;随着渠道流量和获客途径的不断变化&#xff0c;CPA推广渠道统计的痛点也日益凸显。别担心&#xff0c;Xinstall来帮你解决问题&#xff01; …...

011 | efinance分析豆一主连期货

👉👉👉 《玩转Python金融量化专栏》👈👈👈 订阅本专栏的可以下载对应的代码和数据集 🚀 上一篇🌟 下一篇⬅️ 010 东方财富帖子标题情绪分析012 akshare分析NYBOT棉花历史数据 ➡️豆一主连期货(通常简称“豆一”)是指中国期货市场上以大豆为标的的期货合约…...

【Python】函数入门(下)

3&#xff09;&#xff09;* ** ​​​​​​注意&#xff1a;也遵循位置传参在前面&#xff0c;按关键字传参在后面。 代码示例&#xff1a; def func(*args,**kwargs):print(args,kwargs) 该函数中的参数会自动根据传参的方式不同&#xff08;即&#xff1a;按位置…...

git的基本概念和使用原理

Git是一个分布式版本控制系统&#xff0c;用于跟踪文件的更改并协调多个开发人员之间的工作。以下是Git的基本概念和使用原理及方式&#xff1a; 目录 基本概念 使用原理 基本操作示例 基本概念 版本库&#xff08;Repository&#xff09;&#xff1a; 版本库是Git用来保存…...

手写简化版的vue-router

vue-router作为vue全家桶之一的重要插件&#xff0c;有必要去深究一下&#xff0c;今天我们就从0到1手写一个简化版本。 开始之前&#xff0c;我们使用路由插件时是先进行下载路由 npm i vue-router &#xff0c;然后在main.js中使用app.use导入router插件。想要手写vue-rou…...

分享一个基于uni-app的蛋糕商城订购小程序的设计与实现(源码、调试、LW、开题、PPT)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人 八年开发经验&#xff0c;擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等&#xff0c;大家有这一块的问题可以一起交流&…...

Python绘图入门:使用Matplotlib绘制柱状图

Python绘图入门&#xff1a;使用Matplotlib绘制柱状图 柱状图是一种常见的数据可视化方式&#xff0c;能够直观地展示不同类别之间的数据差异。在Python中&#xff0c;Matplotlib是一个非常强大且灵活的绘图库&#xff0c;它不仅能绘制简单的图表&#xff0c;还能创建复杂的多…...

Qt5编译qmqtt库使用MQTT协议连接华为云IOT完成数据上传与交互

一、前言 随着物联网技术的发展,越来越多的设备通过网络互相连接,形成了庞大的智能系统。这些系统能够收集、分析并响应各种数据,从而实现自动化控制和智能化管理。在这个背景下,MQTT 成为了一个广泛使用的轻量级消息传输协议,特别适用于资源受限的环境,如移动应用或远程…...

mysql速起架子

wget https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-8.0.21-linux-glibc2.12-x86_64.tar.xz 下载mysql tar xvJf mysql-8.0.21-linux-glibc2.12-x86_64.tar.xz 解压 mv mysql-8.0.21-linux-glibc2.12-x86_64 mysql-8.0 改名 去到bin目录 cd bin mkdir data gr…...

云动态摘要 2024-08-14

给您带来云厂商的最新动态&#xff0c;最新产品资讯和最新优惠更新。 最新优惠与活动 注册阿里云免费领云服务器_云服务器ECS_阿里云 阿里云 2024-08-14 云上试用新玩法&#xff0c;个人享300元免费额度&#xff0c;企业享660元免费额度&#xff0c;多种规格随心试 [免费体验…...

Elasticsearch 桶(Bucket)聚合详解及示例

在 Elasticsearch 中&#xff0c;桶&#xff08;Bucket&#xff09;聚合是一种强大的工具&#xff0c;它允许我们对数据进行分组并统计每组的数量。这种聚合类型对于理解数据的分布和进行分组统计非常有用。本文将详细介绍 Elasticsearch 的桶聚合&#xff0c;并提供完整的示例…...

Django基础知识

文章目录 新建Django项目helloworld关联数据库admin 新建Django项目 创建django-admin startproject project_name 运行 python manage.py runserver 创建app: python manage.py startapp app_name 目录&#xff1a; 配置文件 settings.py 路由配置 urls.py 项目管理 manage.p…...

使用 nginx 搭建代理服务器(正向代理 https 网站)指南

简介 正向代理 简介 在企业开发环境中&#xff0c;局域网内的设备通常需要通过正向代理服务器访问互联网。正向代理服务器充当中介&#xff0c;帮助客户端请求外部资源并返回结果。局域网内也就是俗称的内网&#xff0c;局域网外的互联网就是外网&#xff0c;在一些特殊场景内…...

深入解析亚马逊数据采集工具选择:Data API/Scrape API/Pangolin采集器

引言 在当今电商领域&#xff0c;亚马逊已成为全球最大的在线零售平台之一。随着竞争的加剧和市场的多样化&#xff0c;商家和企业不仅需要优秀的产品和服务&#xff0c;还需要通过深入的数据分析来制定更加精准的市场策略。因此&#xff0c;采集亚马逊站点数据已成为企业实现…...

探索Linux多样性:主流发行版及其应用场景

目录 引言 Debian&#xff1a;稳定性的标杆 Ubuntu&#xff1a;易用性的代表 Red Hat Enterprise Linux (RHEL)&#xff1a;企业的首选 Fedora&#xff1a;创新的前沿 CentOS&#xff1a;开源的稳定之选 Arch Linux&#xff1a;高级用户的定制天堂 Gentoo&#xff1a;性…...

CentOS7.6 HAproxy-7层负载均衡集群——实施方案

目录 1、前期环境准备 1.准备4台主机 1. 设置主机名 2. 设置IP地址然后重启网卡 3. 关闭防火墙和selinux 4. 全部的服务器完成时间统一 二、配置haproxy(192.168.200.11)服务器 1. 安装haproxy 2. haproxy 配置中分成五部分内容 3. 配置HAproxy&#xff08;192.168.2…...

升级ubuntu22.10到24.04

将所有kinetic换成noble&#xff0c;noble是24.04源&#xff0c;sed或手动改。 cd /etc/aptgrep -nr kinetic将old-releases.ubuntu.com替换成国内的地址&#xff0c;因为2210国内源没找到&#xff0c;没有了&#xff0c;但是现在更新到24.04&#xff0c;国内是有的。 apt up…...

YOLO好像也没那么难?

“学YOLO的念头是想整个游戏外挂&#xff01;” 目录 基本原理 模型推理 IOU交并比 NMS非极大值抑制 模型训练 损失函数LOSS 代码实现 YOLO学习渠道 基本原理 模型推理 学习一个新的神经网络结构&#xff0c;作者认为整明白输入和输出是怎么回事就OK了&#xff0c;至于…...

html编写贪吃蛇页面小游戏(可以玩)

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>贪吃蛇小游戏</title><style>body {…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...