YOLO目标检测的单目(多目标测距),使用相机光学模型,支持目标检测模型训练,可输出目标位置和距离信息并可视化
本项目旨在开发一个基于YOLO的目标检测系统,该系统不仅能检测图像中的多个目标,还能利用单目摄像头的图像估计每个目标与摄像头之间的相对距离。系统的核心组成部分包括目标检测、距离估计、模型训练以及结果可视化。
主要功能
- 目标检测:使用YOLOvX(X代表特定版本,如YOLOv5、YOLOv7等)进行快速准确的目标检测。
- 距离估计:通过分析检测到的目标的尺寸变化和已知的相机参数,利用三角测量原理计算目标距离。
- 模型训练:提供自定义数据集的支持,允许用户训练自己的目标检测模型。
- 结果可视化:直观展示检测结果,包括目标的位置框、类别标签及距离信息。
技术栈
- YOLOvX:作为主要的目标检测算法。
- OpenCV:用于图像处理和相机校准。
- Python:主要编程语言。
- TensorFlow/Keras 或 PyTorch:用于模型训练和部署。
项目结构
-
数据收集与预处理
- 收集带有目标的图像数据集。
- 对数据集进行标注,标记出目标的位置。
- 进行数据增强,增加模型泛化能力。
-
模型训练
- 使用YOLOvX进行模型训练。
- 可以从预训练模型开始微调,或者从头开始训练。
-
相机校准
- 使用OpenCV进行相机内参和外参的校准。
- 计算相机矩阵和畸变系数。
-
距离估计
- 利用相机校准的结果,计算目标的真实大小与图像中目标大小的比例。
- 使用三角测量原理估算目标距离。
-
结果可视化
- 在图像上绘制检测框和距离信息。
- 输出可视化结果到屏幕或文件。
关键步骤
-
数据集准备:
- 收集图像数据集,并使用YOLOvX支持的标注工具进行标注。
- 准备用于距离估计的参考物体尺寸。
-
模型训练:
- 使用YOLOvX训练目标检测模型。
- 评估模型性能,调整超参数以优化精度。
-
相机标定:
- 使用OpenCV进行相机标定,获取相机内参和畸变系数。
-
距离估计算法:
- 实现距离估计算法,考虑目标尺寸的变化与距离的关系。
-
系统集成与测试:
- 将目标检测、距离估计等功能整合到一个系统中。
- 在真实环境中测试系统的准确性和鲁棒性。
-
结果可视化:
- 开发可视化界面,展示检测结果和距离信息。
示例代码
以下是一个简化的示例,展示如何使用YOLOv5进行目标检测,并使用OpenCV进行距离估计:
import cv2
import torch
from ultralytics import YOLO# 加载YOLOv5模型
model = YOLO('yolov5s.pt') # 或者 'path/to/your/model.pt'# 相机内参
camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
# 相机畸变系数
dist_coeffs = np.zeros((4, 1))# 已知目标的实际宽度
known_width = 1.0 # 单位:米# 加载图像
img = cv2.imread('path/to/image.jpg')# 使用YOLO进行目标检测
results = model(img)# 遍历检测结果
for result in results:boxes = result.boxesfor box in boxes:x1, y1, x2, y2 = box.xyxy[0].tolist() # 检测框的左上角和右下角坐标label = box.cls.item() # 类别ID# 计算目标中心点center_x = int((x1 + x2) / 2)center_y = int((y1 + y2) / 2)# 计算目标宽度在图像中的像素值bbox_width = x2 - x1# 使用三角测量原理计算距离focal_length = camera_matrix[0, 0]distance = (known_width * focal_length) / bbox_width# 绘制检测框和距离信息cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)cv2.putText(img, f"Distance: {distance:.2f}m", (center_x, center_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)# 显示结果
cv2.imshow('Detection with Distance', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
此项目提供了一种实用的方法来同时完成目标检测和距离估计的任务。它可以应用于许多领域,例如自动驾驶汽车、安防监控等。通过不断的优化和迭代,可以进一步提高检测的准确性和距离估计的精确度。
相关文章:

YOLO目标检测的单目(多目标测距),使用相机光学模型,支持目标检测模型训练,可输出目标位置和距离信息并可视化
本项目旨在开发一个基于YOLO的目标检测系统,该系统不仅能检测图像中的多个目标,还能利用单目摄像头的图像估计每个目标与摄像头之间的相对距离。系统的核心组成部分包括目标检测、距离估计、模型训练以及结果可视化。 主要功能 目标检测:使用…...
unity简易lua文件迁移工具
一. 了解商业游戏的Lua热更新开发方式 市面上的3种结合Lua热更新的开发方式 1.纯Lua开发(所有的游戏主要逻辑都用Lua实现) 好处:机动性强;坏处:代码效率略差 2.半C#,半Lua开发(核心逻辑C#开发…...
Elasticsearch中的自动补全功能详解与实践
简介 自动补全是现代搜索引擎中的一项重要功能,它能够根据用户的输入提供实时的建议,提高用户体验。Elasticsearch提供了Completion Suggester查询来实现这一功能。本文将详细介绍Elasticsearch中的自动补全功能,并提供详细的配置和查询示例…...

前端如何使用Nginx代理dist网页,代理websocket,代理后端
本文将指导您如何配置Nginx以代理前后端分离的项目,并特别说明了对WebSocket的代理设置。通过本教程,您将能够实现一次性配置,进而使项目能够在任意局域网服务器上部署,并可通过IP地址或域名访问服务。 笔者建议 先速览本文了解大…...

Cannot connect to the Docker daemon at unix:///var/run/docker.sock. 问题解决
问题描述 原来我的服务器docker服务运行正常,但在某次尝试用时, 根据系统的错误提示执行了snap install docker指令之后, 再执行docker ps命令则提示Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running…...

零基础学习Redis(2) -- Redis安装与配置
Redis官方是并不支持Windows系统的,并且现在绝大部分公司都是使用的Linux,所以我们在Linux上进行安装,这里我使用的是Ubuntu 1. 安装步骤 1. 首先使用工具连接到我们的云服务器,然后输入apt指令搜索redis相关的软件包࿱…...

UniApp第一天
一、官网介绍 1.1、 SDK SDK是"Software Development Kit"的缩写,中文意思是“软件开发工具包”。SDK通常是由软件开发者为其他开发者提供的一个软件工具集合,用于帮助开发者快速开发、测试和部署软件应用。SDK通常包含了一系列的开发工具、库…...

TLE4966-3G带方向检测功能的高灵敏度汽车霍尔开关
TLE4966-3G是一款集成电路双霍尔效应传感器,专为使用旋转极轮的高精度应用而设计。通过片上有源补偿电路和斩波器技术实现精确的磁切换点和高温稳定性。 该传感器在Q2提供速度输出,其状态(高或低)与磁场值相对应。对于超过阈值BO…...

Github 2024-08-14 C开源项目日报Top10
根据Github Trendings的统计,今日(2024-08-14统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量C项目10Objective-C项目1PHP项目1Python项目1PHP:流行的Web开发脚本语言 创建周期:4710 天开发语言:C, PHP协议类型:OtherStar数量:37340 …...
飞桨Paddle API index_add 详解
index_add paddle.index_add(x, index, axis, value, nameNone)[源代码] 沿着指定轴 axis 将 index 中指定位置的 x 与 value 相加,并写入到结果 Tensor 中的对应位置。这里 index 是一个 1-D Tensor。除 axis 轴外,返回的 Tensor 其余维度大小和输入 …...

后端代码练习1——加法计算器
1. 需求 输入两个整数,点击 “点击相加” 按钮,显示计算结果。 2.准备工作 创建Spring Boot项目,引入Spring Web依赖,把前端代码放入static目录下。 2.1 前端代码 <!DOCTYPE html> <html lang"en"> <h…...
观察者模式和MQ是什么关系
观察者模式(Observer Pattern)和MQ(Message Queue,消息队列)之间的关系主要体现在它们所实现的功能和机制上的相似性,尽管它们在技术实现和应用场景上有所不同。 观察者模式 观察者模式是一种行为型设计模…...
JDK动态代理和CGLIB动态代理案例分析
JDK动态代理和CGLIB动态代理案例分析 JDK动态代理和CGLIB动态代理的实现原理如下: JDK动态代理的实现原理: JDK动态代理是基于Java的反射机制实现的实现一个继承InvocationHandler接口的对象,重写invoke方法,invoke方法中可以在目…...

【数据结构-前缀哈希】力扣1124. 表现良好的最长时间段
给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数。 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」。 所谓「表现良好的时间段」,意味在这段时间内,「劳累的天数」是严格 大…...

电商平台产品ID|CDN与预渲染|前端边缘计算
技术实现 都是通过ID拿到属性,进行预渲染html,通过 oss 分发出去 详情页这种基本都是通过 ssr 渲染出来,然后上缓存 CDN 分发到边缘节点来处理,具体逻辑可以参考 淘宝——EdgeRoutine边缘计算(CDNServerless 边缘计算…...

LATTICE进阶篇DDR2--(4)DDR2 IP核总结
一、IP核的时钟框架 1片DDR2的接口是16位,且DDR2是双边沿读取的, 故当DDR2芯片的时钟为200M时,右侧DDR2芯片上的数据吞吐率为200M*2*16b,左侧数据吞吐率为200M*32b,左右两侧数据吞吐量相等。 根据上规律可知…...

windows下php安装kafka
下载zookeeper Kafka 依赖 Zookeeper 进行分布式协调,所以需要下载Zookeeper ,当然你也可以使用kafka包里自带的一个默认配置的 Zookeeper。这里我们单独下载一个 访问Zookeeper官方下载页面在页面中找到最新的稳定版本,点击相应的下载链接…...

【wiki知识库】09.欢迎页面展示(浏览量统计)SpringBoot部分
🍊 编程有易不绕弯,成长之路不孤单! 大家好,我是熊哈哈,这个项目从我接手到现在有了两个多月的时间了吧,其实本来我在七月初就做完的吧,但是六月份的时候生病了,在家里休息了一个月的…...

数据分析与应用:微信-情人节红包流向探索分析
目录 0 需求描述 1 红包发送方用户的基本信息缺失率有多高?(即有多少红包发送方用户无法在用户基本信息表中匹配? 2 哪一组红包金额的拒收率最高? 3、最受二线城市欢迎的红包金额为?(即发出次数最多) 4 北上广深 4 大城市中,哪座城市的男性用户发出的 520 红包比例…...
SQL,获取 ID 的历史状态
sas系统的表tb存储病人的医疗历史记录,当Visit_codeSurgery时表示手术,Visit_codeOffice表示咨询,每个病人有多条Visit_code,有时只有Surgery或只有Office:IdVisit_DateVisit_codeA305/15/2004SurgeryA302/5/2005Offic…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...