letcode 分类练习 树的遍历
letcode 分类练习 树的遍历
- 树的构建
- 递归遍历
- 前序遍历
- 中序遍历
- 后序遍历
- 迭代遍历
- 前序遍历
- 中序遍历
- 后序遍历
- 层序遍历
- 层序遍历可以解决的问题
- 107. 二叉树的层序遍历 II
- 199. 二叉树的右视图
- 637. 二叉树的层平均值
- 429. N 叉树的层序遍历
- 515.在每个树行中找最大值
- 116.填充每个节点的下一个右侧节点指针
- 117.填充每个节点的下一个右侧节点指针II
- 104.二叉树的最大深度
- 111.二叉树的最小深度
树的构建
输入数组:[8, 3, 10, 1, 6, null, 14, null, null, 4, 7, 13]
#include <iostream>
#include <vector>
#include <queue>
#include <memory>using namespace std;// 定义二叉树节点结构
struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};// 根据向量数组构建二叉树
TreeNode* constructBinaryTree(const vector<int*>& nums) {if (nums.empty() || !nums[0]) {return nullptr;}// 使用队列进行层序遍历构建树queue<TreeNode*> q;TreeNode* root = new TreeNode(*nums[0]);q.push(root);int i = 1;while (!q.empty() && i < nums.size()) {TreeNode* current = q.front();q.pop();// 构建左子节点if (i < nums.size() && nums[i]) {current->left = new TreeNode(*nums[i]);q.push(current->left);}i++;// 构建右子节点if (i < nums.size() && nums[i]) {current->right = new TreeNode(*nums[i]);q.push(current->right);}i++;}return root;
}
递归遍历
前序遍历
class Solution {
public:vector<int> result;void dfs(TreeNode* root){if(!root) return;result.push_back(root->val);if(root -> left)dfs(root -> left);if(root -> right)dfs(root-> right);}vector<int> preorderTraversal(TreeNode* root) {dfs(root);return result;}
};
中序遍历
class Solution {
public:vector<int> result;void dfs(TreeNode* root){if(!root) return;if(root->left)dfs(root->left);result.push_back(root -> val);if(root->right)dfs(root->right);}vector<int> inorderTraversal(TreeNode* root) {dfs(root);return result;}
};
后序遍历
class Solution {
public:vector<int> result;void dfs(TreeNode* root){if(!root) return;if(root->left)dfs(root->left);if(root->right)dfs(root->right);result.push_back(root -> val);}vector<int> postorderTraversal(TreeNode* root) {dfs(root);return result;}
};
迭代遍历
前序遍历
class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> result;if(!root)return result;while(root || !s.empty()){while(root){s.push(root);// 这里while一直向左就开始收集result.push_back(root->val);root = root -> left;}TreeNode* node = s.top();s.pop();root = node -> right;}return result;}
};
中序遍历
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> result;if(!root)return result;while(root || !s.empty()){while(root){s.push(root);root = root -> left;}TreeNode* node = s.top();s.pop();// 弹栈的时候才收集result.push_back(node->val);root = node -> right;}return result;}
};
后序遍历
后序遍历的迭代方式有区别,就是弹栈后,不是收集,而是判断它的右孩子节点,如果右孩子为空,说明它是叶子节点,这个时候我们收集到result里,并且把这个标记成前驱节点,root再置为空。如果右孩子不为空,我们要像访问左孩子这样继续遍历。
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> result;if(!root) return result;TreeNode* prev;while(root || !s.empty()){while(root){s.push(root);root = root -> left;}TreeNode* root = s.top();s.pop();if(root -> right == nullptr && root != prev){result.push_back(root -> val);prev = root;root = root -> right;}else{s.push(root);root = root -> right;}}return result;}
};
层序遍历
class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {queue<TreeNode*>q;vector<vector<int>> result;if(!root)return result;q.push(root);while(!q.empty()){int k = q.size();vector<int> tmp;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();tmp.push_back(node -> val);if(node->left)q.push(node->left);if(node->right)q.push(node->right);}result.push_back(tmp);}return result;}
};
层序遍历可以解决的问题
107. 二叉树的层序遍历 II
class Solution {
public:vector<vector<int>> levelOrderBottom(TreeNode* root) {queue<TreeNode*>q;vector<vector<int>> result;if(!root)return result;q.push(root);while(!q.empty()){int k = q.size();vector<int> tmp;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();tmp.push_back(node -> val);if(node->left)q.push(node->left);if(node->right)q.push(node->right);}result.push_back(tmp);}reverse(result.begin(), result.end());return result;}
};
199. 二叉树的右视图
class Solution {
public:vector<int> rightSideView(TreeNode* root) {queue<TreeNode*>q;vector<int> result;if(!root)return result;q.push(root);while(!q.empty()){int k = q.size();vector<int> tmp;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();if(i==k-1) result.push_back(node -> val);if(node->left)q.push(node->left);if(node->right)q.push(node->right);}}return result;}
};
637. 二叉树的层平均值
class Solution {
public:vector<double> averageOfLevels(TreeNode* root) {queue<TreeNode*>q;vector<double> result;if(!root)return result;q.push(root);while(!q.empty()){int k = q.size();vector<int> tmp;double sum = 0;for(int i =0;i<k;i++){TreeNode* node = q.front();sum += node->val;q.pop();if(i==k-1) result.push_back(sum/k);if(node->left)q.push(node->left);if(node->right)q.push(node->right);}}return result;}
};
429. N 叉树的层序遍历
class Solution {
public:vector<vector<int>> levelOrder(Node* root) {queue<Node*> q;vector<vector<int>>result;if(!root)return result;q.push(root);while(!q.empty()){int k = q.size();vector<int>tmp;for(int i =0;i<k;i++){Node* node = q.front();q.pop();tmp.push_back(node->val);for(auto c : node->children){q.push(c);}}result.push_back(tmp);}return result;}
};
515.在每个树行中找最大值
class Solution {
public:vector<int> largestValues(TreeNode* root) {queue<TreeNode*> q;vector<int> result;if(!root) return result;q.push(root);while(!q.empty()){int k = q.size();int maxV = INT_MIN;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();if(node -> val > maxV)maxV = node -> val;if(i == k-1)result.push_back(maxV);if(node -> left)q.push(node -> left);if(node -> right)q.push(node -> right);}}return result;}
};
116.填充每个节点的下一个右侧节点指针
class Solution {
public:Node* connect(Node* root) {queue<Node*> q;if(!root) return root;q.push(root);while(!q.empty()){int k = q.size();Node* tmp = NULL;for(int i =0;i<k;i++){Node* node = q.front();q.pop();if(tmp != NULL)tmp -> next = node;tmp = node;if(node -> left)q.push(node -> left);if(node -> right)q.push(node -> right);}}return root;}
};
117.填充每个节点的下一个右侧节点指针II
class Solution {
public:Node* connect(Node* root) {queue<Node*> q;if(!root) return root;q.push(root);while(!q.empty()){int k = q.size();Node* tmp = NULL;for(int i =0;i<k;i++){Node* node = q.front();q.pop();if(tmp != NULL)tmp -> next = node;tmp = node;if(node -> left)q.push(node -> left);if(node -> right)q.push(node -> right);}}return root;}
};
104.二叉树的最大深度
class Solution {
public:int maxDepth(TreeNode* root) {queue<TreeNode*> q;if(!root) return 0;q.push(root);int count = 0;while(!q.empty()){int k = q.size();count++;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();if(node -> left)q.push(node -> left);if(node -> right)q.push(node -> right);}}return count;}
};
111.二叉树的最小深度
如果是叶子节点提前返回
class Solution {
public:int minDepth(TreeNode* root) {queue<TreeNode*> q;if(!root) return 0;q.push(root);int count = 0;while(!q.empty()){int k = q.size();count++;for(int i =0;i<k;i++){TreeNode* node = q.front();q.pop();if(!node -> left && !node -> right)return count;if(node -> left)q.push(node -> left);if(node -> right)q.push(node -> right);}}return count;}
};
相关文章:
letcode 分类练习 树的遍历
letcode 分类练习 树的遍历 树的构建递归遍历前序遍历中序遍历后序遍历 迭代遍历前序遍历中序遍历后序遍历 层序遍历层序遍历可以解决的问题107. 二叉树的层序遍历 II199. 二叉树的右视图637. 二叉树的层平均值429. N 叉树的层序遍历515.在每个树行中找最大值116.填充每个节点的…...
redisssion分布式锁
分布式锁的问题 基于setnx的分布式锁实现起来并不复杂,不过却存在一些问题。 锁误删问题 第一个问题就是锁误删问题,目前释放锁的操作是基于DEL,但是在极端情况下会出现问题。 例如,有线程1获取锁成功,并且执行完任…...
嘎嘎嘎拿到去年想要的包
一年多了 继续,把项目收尾吧 好好学前端,外企!react!从0开始,紧迫!加油!...
前奏编曲:如何编写二段式前奏
选好音源 Pianoteq 6 STAGE比较明亮些,适合做前奏的音源 确定和弦进行 比如4536251,每个小节2和弦,每个小节的和弦弹一下 优化和弦进行衔接和织体 二段式不用对和弦进行就近解决的处理,因为前奏前后要形成对比。 前半部分往…...
征服云端:Kubernetes如何让微服务与云原生技术如虎添翼
引言 在这个数字化转型的时代,微服务架构已经成为构建现代应用程序的首选方式。它不仅提高了开发效率,还增强了系统的可扩展性和灵活性。而随着云计算技术的迅猛发展,云原生的概念逐渐深入人心,它代表了一种全新的软件开发方法论…...
开源AI智能名片系统与高级机器学习技术的融合应用:重塑商务交流的未来
摘要:在数字化浪潮的推动下,人工智能(AI)技术,尤其是机器学习领域的快速发展,正深刻改变着各行各业的面貌。开源AI智能名片系统作为这一变革的先锋,通过集成并优化多种高级机器学习技术…...
Java中synchronized的偏向锁是如何减少锁开销的
偏向锁(Biased Locking)是一种优化 Java synchronized 锁的机制,旨在减少在无竞争情况下的锁开销。它通过将锁偏向于单个线程来优化锁的性能。以下是偏向锁减少锁开销的具体方式和原理: 偏向锁的工作原理 锁的初始状态: 当一个对…...
react18 + ts 使用video.js 直播.m3u8格式的视频流
一、安装依赖 我使用的video.js版本是8.17.3,从 Video.js 7.x 开始,HLS 支持被内置到了 Video.js 中所以不需要安装其他依赖 npm i video.js 二、创建VideoPlayer组件 import React, { useEffect, useRef } from react import videojs from video.js …...
使用 onBeforeRouteLeave 组合式函数提升应用的用户体验
title: 使用 onBeforeRouteLeave 组合式函数提升应用的用户体验 date: 2024/8/14 updated: 2024/8/14 author: cmdragon excerpt: 摘要:本文介绍了在Nuxtjs中使用onBeforeRouteLeave组合式函数来提升应用用户体验的方法。onBeforeRouteLeave允许在组件离开当前路…...
uni-app 吸顶方案总结
效果 页面级 uni.pageScrollTo 官方文档:https://uniapp.dcloud.net.cn/api/ui/scroll.html#pagescrollto 原生头部导航 uni.pageScrollTo({selector: #tabs,duration: 300 });(推荐)需要兼容自定义头部导航 <template><view id"demo1" :styl…...
【C#】知识汇总
目录 1 概述1.1 GC(Garbage Collection)1.1.1 为什么需要GC?1.1.2 GC的工作原理工作原理什么是Root?GC算法:Mark-Compact 标记压缩算法GC优化:Generational 分代算法 1.1.3 GC的触发时间1.1.4 如何减少垃圾…...
1、Unity【基础】3D数学
3D数学 文章目录 3D数学1、数学计算公共类Mathf1、Mathf和Math2、区别3、Mathf中的常用方法(一般计算一次)4、Mathf中的常用方法(一般不停计算)练习 A物体跟随B物体移动 2、三角函数1、角度和弧度2、三角函数3、反三角函数练习 物…...
虚拟机ubuntu22的扩容记录
这里lsblk命令能看到, ubuntu逻辑分区只有29G, 但总分区60G,还有接近30G未使用。 rootx:/home/x# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS loop0 7:0 0 63.9M 1 loop /snap/core2…...
Docker 常用配置
Docker 常用配置 1. 配置方法 修改下面位置: Linux:vim /etc/docker/daemon.jsonmacOS:菜单栏图标->Settings->Docker Engine 注意:修改完需要重启Docker Linux:systemctl restart dockermacOS:…...
通过示例了解 .NET Core 中的依赖注入
依赖注入 (DI) 是一种用于实现 IoC(控制反转)的设计模式,可以更好地解耦应用程序内的依赖关系并更轻松地管理它们。.NET Core 内置了对依赖注入的支持,提供了一种有效管理依赖关系的强大方法。 一.什么是依赖注入? 依…...
fetch、FormData上传多张图片
利用fetch方法和FormData对象上传多张图片 formdata()对象可以序列化多张图片 <html><head><meta http-equiv"content-type" content"text/html;charsetUTF-8"/><title>测试fetch和formdata上传多张图片</title></head&…...
C++STL详解(五)——list类的具体实现
一.本次所需实现的三个类及其成员函数接口 链表首先要有结点,因此我们需要实现一个结点类。 链表要有管理结点的结构,因此我们要有list类来管理结点。 链表中还要有迭代器,而迭代器的底层其实是指针。但是我们现有的结点类无法完成迭代器的…...
鸿蒙(API 12 Beta3版)【使用投播组件】案例应用
华为视频接入播控中心和投播能力概述** 华为视频在进入影片详情页播放时,支持在控制中心查看当前播放的视频信息,并进行快进、快退、拖动进度、播放暂停、下一集、调节音量等操作,方便用户通过控制中心来操作当前播放的视频。 当用户希望通…...
【STM32项目】在FreeRtos背景下的实战项目的实现过程(一)
个人主页~ 这篇文章是我亲身经历的,在做完一个项目之后总结的经验,虽然我没有将整个项目给放出来,因为这项目确实也是花了米让导师指导的,但是这个过程对于STM32的实战项目开发都是非常好用的,可以说按照这个过程&…...
C#垃圾处理机制相关笔记
C#编程中的垃圾处理机制主要通过垃圾回收器(Garbage Collector,GC)实现自动内存管理。C#作为一种托管语言,其垃圾处理机制显著减轻了程序员的内存管理负担,与C语言等非托管语言形成鲜明对比。具体介绍如下:…...
C语言memcmp函数
目录 开头1.什么是memcmp函数?2.memcmp函数的内部程序流程图 3.memcmp函数的实际应用比较整型数组比较短整型二维数组比较结构体变量…… 结尾 开头 大家好,我叫这是我58。今天,我们要学一下关于C语言里的memcmp函数的一些知识。 1.什么是memcmp函数?…...
低代码: 组件库测试之Vue环境下的测试工具以及测试环境搭建
Vue Test Utils Vue Test Utils 1 targets Vue 2. Vue Test Utils 2 targets Vue 3. 特别注意要使用 版本 2.0.0 以上 提供特定的方法,在隔离的话环境下,进行组件的挂载,以及一系列的测试 配置开发环境 手动配置, 是比较麻烦的vue cli 是基于插件架构的, 插件可以: 安装对…...
【Vue3】高颜值后台管理模板推荐
ELP - 权限管理系统 基于Vue 3框架与PrimeVue UI组件库技术精心构建的高颜值后台权限管理系统模板。该模板系统已成功实现基于RBAC(Role-Based Access Control)模型的权限管理系统和字典数据管理模块,后端则使用了Spring Boot框架࿰…...
详细介绍Pytorch中torchvision的相关使用
torchvision 是 PyTorch 的一个官方库,主要用于处理计算机视觉任务。提供了许多常用的数据集、模型架构、图像转换等功能,使得计算机视觉任务的开发变得更加高效和便捷。以下是对 torchvision 主要功能的详细介绍: 1. 数据集(Dat…...
AI部署——主流模型推理部署框架
我们以最经典的Yolov5目标检测网络为例解释一下10种主流推理部署框架的大概内容,省略模型训练的过程,只讨论模型转换、环境配置、推理部署等步骤。 Intel的OpenVINO — CPUNvidia的TensorRT — GPU/CPUOpenCV DNN Module — GPU/CPUMicrosoft ONNX Runti…...
PyTorch之loading fbgemm.dll异常的解决办法
前言 PyTorch是一个深度学习框架,当我们在本地调试大模型时,可能会选用并安装它,目前已更新至2.4版本。 一、安装必备 1. window 学习或开发阶段,我们通常在window环境下进行,因此需满足以下条件: Windo…...
Vscode——如何实现 Ctrl+鼠标左键 跳转函数内部的方法
一、对于Python代码 安装python插件即可实现 二、对于C/C代码 安装C/C插件即可实现...
力扣热题100_回溯_78_子集
文章目录 题目链接解题思路解题代码 题目链接 78. 子集 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入ÿ…...
浏览器如何工作(一)进程架构
分享cosine 大佬,版权©️大佬所有 浏览器的核心功能 浏览器,“浏览” 是这个产品的核心,浏览无非分为两步: 获取想浏览的资源 展示得到的资源 现代浏览器还增加了交互功能,这涉及到脚本运行。因此,…...
【LeetCode】两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答案。 示例 1…...
wordpress redis memcached/厦门seo新站策划
一. 事件背景 在凤巢的推广平台中,有对物料进行不同属性进行筛选排序的需求,由于物料的量级很大(单用户千万级物料),并且有根据物料关键词搜索和某些特定值搜索,所以需要一个全文检索的搜索引擎来满足物料…...
做网站开发的笔记本配置/平台优化
string :关键字 String :类 可以认为string 是String的别名,在生成的IL中,都是当做String,类似的还有 object 与Object,int 与 Int32 转载于:https://www.cnblogs.com/nzbbody/archive/2012/01/06/2314170.…...
简单易做的网站/个人网页设计作品模板
湘潭大学的EDA课程设计,可直接通过用VHDL设计交通灯控制器图a是一个十字路口交通灯控制示意图,H公路和V公路在路口各有两个红绿灯指示道路通行状况。图a 十字路口交通灯控制示意图对应图a的交通灯控制器,拟用VHDL语言设计一电路模拟其控制逻辑࿰…...
嘉兴营销型网站建设/深圳知名seo公司
Docker? 为什么要使用Docker? 与卿画眉共浮生关注 0.2162018.10.24 09:31:12字数 1,886阅读 3,647 Docker 是一个开源的容器引擎,可以轻松的为任何应用创建一个轻量级的、可移植的、自给自足的容器。开发者和系统管理员在笔记本上编译测试通过的容器可…...
网站建设个人工作室/国产系统2345
d.如果图上的include、lib、path几个变量没有,请点击新建;如有,点击编辑;按下面变量值进行修改:变量:path值:c:\MSDEV\bin; %path%变量:lib值:c:\MSDEV\lib;%lib%变量&am…...
做网站的常识/高端网站制作
Tomcat 部署项目 本节介绍如何在 Tomcat 上部署服务。 Tomcat 的目录结构 bin:Tomcat 的启动、关闭脚本。conf:Tomcat 配置文件。lib:Tomcat 需要的类库(jar 包)。logs:日志目录。temp:Tomcat…...