太酷了,用Python实现一个动态条形图!
大家好,我是小F~
说起动态条形图,小F之前推荐过两个Python库,比如「Bar Chart Race」、「Pandas_Alive」,都可以实现。


今天就给大家再介绍一个新的Python库「pynimate」,一样可以制作动态条形图,而且样式更好看。
GitHub地址:
https://github.com/julkaar9/pynimate
文档地址:https://julkaar9.github.io/pynimate/
首先使用pip安装这个库,注意Python版本要大于等于3.9。
# 安装pynimatepip install pynimate -i https://pypi.tuna.tsinghua.edu.cn/simple其中pynimate使用pandas数据帧格式,时间列设置为索引index。
time, col1, col2, col3
2012 1 2 1
2013 1 1 2
2014 2 1.5 3
2015 2.5 2 3.5然后来看两个官方示例。
第一个示例比较简单,代码如下。
from matplotlib import pyplot as plt
import pandas as pd
import pynimate as nim# 数据格式+索引
df = pd.DataFrame({"time": ["1960-01-01", "1961-01-01", "1962-01-01"],"Afghanistan": [1, 2, 3],"Angola": [2, 3, 4],"Albania": [1, 2, 5],"USA": [5, 3, 4],"Argentina": [1, 4, 5],}
).set_index("time")# Canvas类是动画的基础
cnv = nim.Canvas()
# 使用Barplot模块创建一个动态条形图, 插值频率为2天
bar = nim.Barplot(df, "%Y-%m-%d", "2d")
# 使用了回调函数, 返回以月、年为单位格式化的datetime
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].year)
# 将条形图添加到画布中
cnv.add_plot(bar)
cnv.animate()
plt.show()Canvas类是动画的基础,它会处理matplotlib图、子图以及创建和保存动画。
Barplot模块创建动态条形图,有三个必传参数,data、time_format、ip_freq。
分别为数据、时间格式、插值频率(控制刷新频率)。
效果如下,就是一个简单的动态条形图。

我们还可以将结果保存为GIF或者是mp4,其中mp4需要安装ffmpeg。
# 保存gif, 1秒24帧
cnv.save("file", 24, "gif")# 电脑安装好ffmpeg后, 安装Python库
pip install ffmpeg-python# 保存mp4, 1秒24帧
cnv.save("file", 24 ,"mp4")第二个示例相对复杂一些,可以自定义参数,样式设置成深色模式。
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import pynimate as nim# 更新条形图
def post_update(ax, i, datafier, bar_attr):ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.spines["bottom"].set_visible(False)ax.spines["left"].set_visible(False)ax.set_facecolor("#001219")for bar, x, y in zip(bar_attr.top_bars,bar_attr.bar_length,bar_attr.bar_rank,):ax.text(x - 0.3,y,datafier.col_var.loc[bar, "continent"],ha="right",color="k",size=12,)# 读取数据
df = pd.read_csv("sample.csv").set_index("time")
# 分类
col = pd.DataFrame({"columns": ["Afghanistan", "Angola", "Albania", "USA", "Argentina"],"continent": ["Asia", "Africa", "Europe", "N America", "S America"],}
).set_index("columns")
# 颜色
bar_cols = {"Afghanistan": "#2a9d8f","Angola": "#e9c46a","Albania": "#e76f51","USA": "#a7c957","Argentina": "#e5989b",
}# 新建画布
cnv = nim.Canvas(figsize=(12.8, 7.2), facecolor="#001219")
bar = nim.Barplot(df, "%Y-%m-%d", "3d", post_update=post_update, rounded_edges=True, grid=False
)
# 条形图分类
bar.add_var(col_var=col)
# 条形图颜色
bar.set_bar_color(bar_cols)
# 标题设置
bar.set_title("Sample Title", color="w", weight=600)
# x轴设置
bar.set_xlabel("xlabel", color="w")
# 时间设置
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].strftime("%b, %Y"), color="w"
)
# 文字显示
bar.set_text("sum",callback=lambda i, datafier: f"Total :{np.round(datafier.data.iloc[i].sum(),2)}",size=20,x=0.72,y=0.20,color="w",
)# 文字颜色设置
bar.set_bar_annots(color="w", size=13)
bar.set_xticks(colors="w", length=0, labelsize=13)
bar.set_yticks(colors="w", labelsize=13)
# 条形图边框设置
bar.set_bar_border_props(edge_color="black", pad=0.1, mutation_aspect=1, radius=0.2, mutation_scale=0.6
)
cnv.add_plot(bar)
cnv.animate()
# 显示
# plt.show()
# 保存gif
cnv.save("example3", 24, "gif")效果如下,可以看出比上面的简单示例好看了不少。

另外作者还提供了相关的接口文档。
帮助我们理解学习,如何去自定义参数设置。
包含画布设置、保存设置、条形图设置、数据设置等等。

下面我们就通过获取电视剧「狂飙」角色的百度指数数据,来制作一个动态条形图。
先对网页进行分析,账号登陆百度指数,搜索关键词「高启强」,查看数据情况。

发现数据经过js加密,所以需要对获取到的数据进行解析。
使用了一个开源的代码,分分钟就搞定数据问题。
具体代码如下,其中「cookie值」需要替换成你自己的。
import datetime
import requests
import jsonword_url = 'http://index.baidu.com/api/SearchApi/thumbnail?area=0&word={}'def get_html(url):headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36","Host": "index.baidu.com","Referer": "http://index.baidu.com/v2/main/index.html","Cipher-Text": "1652425237825_1652501356206_VBpwl9UG8Dvs2fAi91KToRTSAP7sDsQU5phHL97raPDFJdYz3fHf9hBAQrGGCs+qJoP7yb44Uvf91F7vqJLVL0tKnIWE+W3jXAI30xx340rhcwUDQZ162FPAe0a1jsCluJRmMLZtiIplubGMW/QoE/0Pw+2caH39Ok8IsudE4wGLBUdYg1/bKl4MGwLrJZ7H6wbhR0vT5X0OdCX4bMJE7vcwRCSGquRjam03pWDGZ51X15fOlO0qMZ2kqa3BmxwNlfEZ81l3L9nZdrc3/Tl4+mNpaLM7vA5WNEQhTBoDVZs6GBRcJc/FSjd6e4aFGAiCp1Y8MD66chTiykjIN51s7gbJ44JfVS0NjBnsvuF55bs="}cookies = {'Cookie': 你的cookie}response = requests.get(url, headers=headers, cookies=cookies)return response.textdef decrypt(t, e):n = list(t)i = list(e)a = {}result = []ln = int(len(n) / 2)start = n[ln:]end = n[:ln]for j, k in zip(start, end):a.update({k: j})for j in e:result.append(a.get(j))return ''.join(result)def get_ptbk(uniqid):url = 'http://index.baidu.com/Interface/ptbk?uniqid={}'resp = get_html(url.format(uniqid))return json.loads(resp)['data']def get_data(keyword, start='2011-01-02', end='2023-01-02'):url = "https://index.baidu.com/api/SearchApi/index?area=0&word=[[%7B%22name%22:%22{}%22,%22wordType%22:1%7D]]&startDate={}&endDate={}".format(keyword, start, end)data = get_html(url)data = json.loads(data)uniqid = data['data']['uniqid']data = data['data']['userIndexes'][0]['all']['data']ptbk = get_ptbk(uniqid)result = decrypt(ptbk, data)result = result.split(',')start = start_date.split("-")end = end_date.split("-")a = datetime.date(int(start[0]), int(start[1]), int(start[2]))b = datetime.date(int(end[0]), int(end[1]), int(end[2]))node = 0for i in range(a.toordinal(), b.toordinal()):date = datetime.date.fromordinal(i)print(date, result[node])node += 1with open('data.csv', 'a+') as f:f.write(keyword + ',' + date.strftime('%Y-%m-%d') + ',' + result[node] + '\n')if __name__ == '__main__':names = ['唐小龙', '孟德海', '孟钰', '安欣', '安长林', '徐忠', '徐江', '曹闯', '李响', '李宏伟', '李有田', '杨健', '泰叔', '赵立冬', '过山峰', '陆寒', '陈书婷', '高启兰', '高启强', '高启盛', '高晓晨']for keyword in names:start_date = "2023-01-14"end_date = "2023-02-04"get_data(keyword, start_date, end_date)爬取数据情况如下,一共是400多条,其中有空值存在。
然后就是转换成pynimate所需的数据格式。

对数据进行数据透视表操作,并且将空值数据填充为0。
import pandas as pd# 读取数据
df = pd.read_csv('data.csv', encoding='utf-8', header=None, names=['name', 'day', 'number'])# 数据处理,数据透视表
df_result = pd.pivot_table(df, values='number', index=['day'], columns=['name'], fill_value=0)
# 保存
df_result.to_csv('result.csv')保存文件,数据情况如下。

使用之前深色模式的可视化代码,并略微修改。
比如设置条形图数量(n_bars)、标题字体大小及位置、中文显示等等。
from matplotlib import pyplot as plt
import pandas as pd
import pynimate as nim# 中文显示
plt.rcParams['font.sans-serif'] = ['SimHei'] #Windows
plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] #Mac
plt.rcParams['axes.unicode_minus'] = False# 更新条形图
def post_update(ax, i, datafier, bar_attr):ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.spines["bottom"].set_visible(False)ax.spines["left"].set_visible(False)ax.set_facecolor("#001219")# 读取数据
df = pd.read_csv("result.csv").set_index("day")# 新建画布
cnv = nim.Canvas(figsize=(12.8, 7.2), facecolor="#001219")
bar = nim.Barplot(df, "%Y-%m-%d", "3h", post_update=post_update, rounded_edges=True, grid=False, n_bars=6
)
# 标题设置
bar.set_title("《狂飙》主要角色热度排行(百度指数)", color="w", weight=600, x=0.15, size=30)
# 时间设置
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].strftime("%Y-%m-%d"), color="w", y=0.2, size=20
)# 文字颜色设置
bar.set_bar_annots(color="w", size=13)
bar.set_xticks(colors="w", length=0, labelsize=13)
bar.set_yticks(colors="w", labelsize=13)
# 条形图边框设置
bar.set_bar_border_props(edge_color="black", pad=0.1, mutation_aspect=1, radius=0.2, mutation_scale=0.6
)
cnv.add_plot(bar)
cnv.animate()
# 显示
# plt.show()
# 保存gif
cnv.save("kuangbiao", 24, "gif")执行代码,《狂飙》电视剧角色热度排行的动态条形图就制作好了。
结果如下,看着还不错。

相关数据及代码都已上传,评论区回复【狂飙】即可获取。
相关文章:
太酷了,用Python实现一个动态条形图!
大家好,我是小F~说起动态条形图,小F之前推荐过两个Python库,比如「Bar Chart Race」、「Pandas_Alive」,都可以实现。今天就给大家再介绍一个新的Python库「pynimate」,一样可以制作动态条形图,…...
单元测试junit+mock
单元测试 是什么? 单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证。至于“单元”的大小或范围,并没有一个明确的标准,“单元”可以是一个方法、类、功能模块或者子系统。 单元测试通…...
2022Q4手机银行新版本聚焦提升客群专属、财富开放平台、智能化能力,活跃用户规模6.91亿人
易观:2022年第4季度,手机银行APP迭代升级加快,手机银行作为零售银行服务及经营的主阵地,与零售银行业务发展的联系日益紧密。迭代升级一方面可以顺应零售银行发展战略及方向,对手机银行业务布局进行针对性调整优化&…...
YOLO-V1~V3经典物体检测算法介绍
大名鼎鼎的YOLO物体检测算法如今已经出现了V8版本,我们先来了解一下它前几代版本都做了什么吧。本篇文章介绍v1-v3,后续会继续更新。一、节深度学习经典检测方法概述1.1 检测任务中阶段的意义我们所学的深度学习经典检测方法 ,有些是单阶段的…...
SparkSQL 核心编程
文章目录SparkSQL 核心编程1、新的起点2、SQL 语法1) 读取 json 文件创建 DataFrame2) 对 DataFrame 创建一个临时表3) 通过SQL语句实现查询全表3、DSL 语法1) 创建一个DataFrame2) 查看DataFrame的Schema信息3) 只查看"username"列数据4) 查看"username"列…...
Android核心开发【UI绘制流程解析+原理】
一、UI如何进行具体绘制 UI从数据加载到具体展现的过程: 进程间的启动协作: 二、如何加载到数据 应用从启动到onCreate的过程: Activity生产过程详解: 核心对象 绘制流程源码路径 1、Activity加载ViewRootImpl ActivityThread…...
计算机组成原理第七章笔记记录
仅仅作为笔记记录,B站视频链接,若有错误请指出,谢谢 基本概念 演变过程 I/O系统基本组成 I/O软件 包括驱动程序、用户程序、管理程序、升级补丁等 下面的两种方式是用来实现CPU和I/O设备的信息交换的 I/O指令 CPU指令的一部分,由操作码,命令码,设备…...
ORB-SLAM2编译、安装等问题汇总大全(Ubuntu20.04、eigen3、pangolin0.5、opencv3.4.10)
ORB-SLAM2编译、安装等问题汇总大全(Ubuntu20.04、eigen3、pangolin0.5、opencv3.4.10) 1:环境说明: 使用的Linux发行版本为Ubuntu 20.04 SLAM2下载地址为:git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2 2&a…...
QuickBuck:一款专为安全研究人员设计的勒索软件模拟器
关于QuickBuck QuickBuck是一款基于Golang开发的勒索软件模拟工具,在该工具的帮助下,广大研究人员可以通过更简单的方法来判断反病毒保护方案是否能够有效地预防勒索软件的攻击。 功能介绍 该工具能够模拟下列勒索软件典型行为,其中包括&a…...
【八大数据排序法】堆积树排序法的图形理解和案例实现 | C++
第二十一章 堆积树排序法 目录 第二十一章 堆积树排序法 ●前言 ●认识排序 1.简要介绍 2.图形理解 3.算法分析 ●二、案例实现 1.案例一 ● 总结 前言 排序算法是我们在程序设计中经常见到和使用的一种算法,它主要是将一堆不规则的数据按照递增…...
低代码开发平台|生产管理-生产加工搭建指南
1、简介1.1、案例简介本文将介绍,如何搭建生产管理-生产加工。1.2、应用场景在主生产计划列表中下达加工后,在加工单列表可操作领料、质检。2、设置方法2.1、表单搭建1)新建表单【产品结构清单(BOM)】,字段…...
Python类型-语句-函数
文章目录类型动态类型:变量类型会随着程序的运行发生改变注释控制台控制台输入input()运算符算术关系逻辑赋值总结语句判断语句while循环for循环函数链式调用和嵌套调用递归关键字传参在C/java中,整数除以整数结果还是整数,并不会将小数部分舍弃…...
真兰仪表在创业板开启申购:募资约20亿元,IPO市值约为78亿元
2月9日,上海真兰仪表科技股份有限公司(下称“真兰仪表”,SZ:301303)开启申购,将在深圳证券交易所创业板上市。本次上市,真兰仪表的发行价为26.80元/股,市盈率43.06倍。 据贝多财经了解…...
【2023】Prometheus-Prometheus与Alertmanager配置详解
记录一下Prometheus与Alertmanager的配置参数等内容 目录1.Prometheus1.1.prometheus.yml1.2.告警规则定义2.alertmanager2.1.alertmanager.yml2.1.1.global:全局配置2.1.1.1.以email方式作为告警发送方2.1.1.2.以wechat方式作为告警发送方2.1.1.3.以webhook方式作为…...
华为HCIE学习之openstack基础
文章目录一、Openstack各种文件位置二、Openstack命令操作1.使用帮助三、用命令发放云主机1、创建租户2、创建用户并与租户绑定3、注册镜像4、创建规格5、创建公有网络及其子网(做弹性IP用)6、创建私有网络及其子网7、创建路由并设置网关与端口8、创建安…...
Python实现贝叶斯优化器(Bayes_opt)优化BP神经网络分类模型(BP神经网络分类算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。1.项目背景贝叶斯优化器(BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。贝叶斯优化器是基…...
Elasticsearch(九)搜索---搜索辅助功能(下)--搜索性能分析
一、前言 上篇文章我们学习了ES的搜索辅助功能的一部分–分别是指定搜索返回的字段,搜索结果计数,分页,那么本次我们来学习一下ES的性能分析相关功能。 二、ES性能分析 在使用ES的过程中,有的搜索请求的响应比较慢,…...
化繁为简|中信建投基于StarRocks构建统一查询服务平台
近年来,在证券服务逐渐互联网化,以及券商牌照红利逐渐消退的行业背景下,中信建投不断加大对数字化的投入,尤其重视数据基础设施的建设,期望在客户服务、经营管理等多方面由经验依赖向数据驱动转变,从而提高…...
2023数字中国创新大赛·数据开发赛道首批赛题启动报名
由数字中国建设峰会组委会主办的2023数字中国创新大赛(DCIC 2023)已正式启幕,本届大赛结合当下数字技术发展的热点和业界关注的焦点,面向产业实际需求设置了九大赛道。其中,数据开发赛道2月8日正式上线首批赛题&#x…...
MySQL数据库
1.MySQL的MyISAM与InnoDB两种存储引擎在,事务、锁级别,各自的适用场景? 1.1事务处理上方面 MyISAM:强调的是性能,每次查询具有原子性,其执行数度比InnoDB类型更快,但是不提供事务支持。 InnoDB:提供事务…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001
qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类,直接把源文件拖进VS的项目里,然后VS卡住十秒,然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分,导致编译的时候找不到了。因…...
Yii2项目自动向GitLab上报Bug
Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...
