当前位置: 首页 > news >正文

【Python读书数据,并计算数据的相关系数、方差,均方根误差】

为了处理Python中的读书数据(假设这里指的是一系列关于书籍阅读量或评分的数据),并计算这些数据的相关系数、方差以及均方根误差(RMSE),我们首先需要明确数据的结构。这里,我将假设我们有一组关于书籍的评分数据,并展示如何使用Python的numpyscipy库来计算这些统计量。

假设数据

假设我们有两列数据:一列是书籍的“预期评分”(由专家或算法给出),另一列是“实际评分”(由读者给出)。

import numpy as np# 假设数据
expected_scores = np.array([8, 9, 7, 8, 9, 7, 6, 8, 7, 9])
actual_scores = np.array([7, 8, 6, 8, 10, 7, 5, 7, 8, 8])

计算相关系数

相关系数(这里我们使用皮尔逊相关系数)衡量两个变量之间的线性关系强度和方向。

from scipy.stats import pearsonrcorr, _ = pearsonr(expected_scores, actual_scores)
print(f"相关系数: {corr}")

计算方差

方差是衡量数据分布离散程度的统计量。

variance_expected = np.var(expected_scores)
variance_actual = np.var(actual_scores)print(f"预期评分的方差: {variance_expected}")
print(f"实际评分的方差: {variance_actual}")

计算均方根误差(RMSE)

RMSE是衡量预测值与真实值之间差异的一种常用方法,特别是在回归问题中。

from sklearn.metrics import mean_squared_errorrmse = np.sqrt(mean_squared_error(expected_scores, actual_scores))
print(f"均方根误差(RMSE): {rmse}")

注意,这里使用了sklearn.metrics中的mean_squared_error函数来计算均方误差(MSE),然后取平方根得到RMSE。

完整代码

将上述所有部分组合在一起,我们得到以下完整的Python脚本:

import numpy as np
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error# 假设数据
expected_scores = np.array([8, 9, 7, 8, 9, 7, 6, 8, 7, 9])
actual_scores = np.array([7, 8, 6, 8, 10, 7, 5, 7, 8, 8])# 计算相关系数
corr, _ = pearsonr(expected_scores, actual_scores)
print(f"相关系数: {corr}")# 计算方差
variance_expected = np.var(expected_scores)
variance_actual = np.var(actual_scores)
print(f"预期评分的方差: {variance_expected}")
print(f"实际评分的方差: {variance_actual}")# 计算均方根误差(RMSE)
rmse = np.sqrt(mean_squared_error(expected_scores, actual_scores))
print(f"均方根误差(RMSE): {rmse}")

这个脚本将输出预期评分和实际评分之间的相关系数、各自的方差,以及它们之间的RMSE。

相关文章:

【Python读书数据,并计算数据的相关系数、方差,均方根误差】

为了处理Python中的读书数据(假设这里指的是一系列关于书籍阅读量或评分的数据),并计算这些数据的相关系数、方差以及均方根误差(RMSE),我们首先需要明确数据的结构。这里,我将假设我们有一组关…...

垃圾收集器G1ZGC详解

G1收集器(-XX:UseG1GC) G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征. G1将Java堆划分为多个大小相等的独立区域(Region),JVM目…...

AI芯片:高性能卷积计算中的数据复用

随着深度学习的飞速发展,对处理器的性能要求也变得越来越高,随之涌现出了很多针对神经网络加速设计的AI芯片。卷积计算是神经网络中最重要的一类计算,本文分析了高性能卷积计算中的数据复用,这是AI芯片设计中需要优化的重点之一&a…...

gitlab修改默认访问端口

GitLab 自带了一个 Nginx 服务器实例,用于处理 HTTP 和 HTTPS 请求。这个内置的 Nginx 服务器被配置为与 GitLab 应用程序实例一起工作,并且它负责处理所有前端的网络通信。 通过yum或者apt安装Gitlab时,nginx通常是被自带安装并配置好的。 …...

python——异常

Python 中的异常及继承关系 在 Python 中,异常用于表示程序在运行过程中遇到的错误,所有异常类最终都继承自 BaseException。通过异常处理,我们可以捕获和处理这些错误,避免程序崩溃。 Python 异常继承关系图 BaseException-- …...

【人工智能】利用TensorFlow.js在浏览器中实现一个基本的情感分析系统

使用TensorFlow.js在浏览器中进行情感分析是一个非常实用的应用场景。TensorFlow.js 是一个用于在JavaScript环境中训练和部署机器学习模型的库,使得开发者能够在客户端直接运行复杂的机器学习任务。对于情感分析,我们可以使用预先训练好的模型来识别文本…...

Python——扩展数据类型

Python 的扩展数据类型是对内置数据类型的增强,旨在解决特定需求,提供更高级的功能。我们来看一些常见的扩展数据类型及其原理、用途,并通过示例逐步讲解。 1. collections.namedtuple namedtuple 是增强的元组,允许用名称访问元…...

JavaScript 详解——Vue基础

第一章 JavaScript简介 为什么学习javascript ? JavaScript 是全球最流行的编程语言。 JavaScript 是属于 Web 的编程语言。 JavaScript 是 web 开发者必学的三种语言之一: HTML 定义网页的内容 CSS 规定网页的布局 JavaScript 对网页行为进行编程 …...

机械行业数字化生产供应链产品解决方案(十二)

我们为机械行业提供的数字化生产供应链解决方案通过集成物联网、人工智能和大数据技术,打造了一套智能化的生产和供应链管理系统,实现了从设计、生产到物流的全程数字化、智能化。该系统通过实时数据采集与分析,优化生产计划和资源配置&#…...

Git——命令集合

Git命令集合 1. 基本操作 1.1 创建版本库 初始化本地仓库:git init添加文件到仓库:git add | git add file file2… | git add.提交文件到本地仓库:git commit -m “message” 1.2 版本回退 查看状态: git status查看全部修改…...

python 数据可视化折线图练习(下:代码演示)

根据上篇对三国疫情情况数据的罗列,构建折线图完成数据展示。(示例如下) 接下来是具体代码演示 import json from pyecharts.charts import Line from pyecharts.options import TitleOpts , LegendOpts , ToolboxOpts ,VisualMapOpts , T…...

深入探索 Go 1.18 的 debug/buildinfo:构建信息的获取与应用

标题:深入探索 Go 1.18 的 debug/buildinfo:构建信息的获取与应用 引言 Go 语言自 1.18 版本起,引入了对构建信息的标准化处理,这一特性极大地简化了获取程序构建信息的过程。debug/buildinfo 包提供了访问 Go 二进制文件中嵌入…...

Nios II的BSP Editor

1.菜单打开BSP Editor (1) (2) (3) 项目文件夹 -> software文件夹 -> ... _bsp文件夹 -> settings.bsp文件 2.文件打开BSP Editor 选中项目文件,右键,Nios II -> …...

Android-自适用高度的ViewPager

需求 在项目中,我们常常遇到需要动态调整 ViewPager 的高度,以适应其内容大小的需求。默认情况下,ViewPager 的高度是固定的,无法根据每个页面的内容高度进行调整。这会导致在内容高度不一致时,出现不必要的空白区域或…...

代码随想录day38|| 322零钱兑换 279完全平方数 139单词拆分

322零钱兑换 力扣题目链接 题目描述: 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额&#xff0c…...

Cesium天空盒子(Skybox)制作(js代码)和显示

介绍 在Cesium中,星空背景是通过天空盒子方式(6张图片)来显示的,原生的图片分辨率太低,本项目用于生成天空盒子的6张图片。最终生成的6个图片大小约为500kb(每个),格式为jpg,总共的恒星数目约为…...

JAVA中的缓冲流BufferedInputStream

在Java中,BufferedInputStream 是一种用于包装其他输入流(如 FileInputStream)的过滤流。它通过内部缓冲区机制提高了输入流处理的效率。使用缓冲流可以减少读取数据的次数,因为每次从输入流读取数据时,BufferedInputS…...

WindowContainerTransaction类详解(一)

1、WindowContainerTransaction是什么: windowContainerTransaction类的对象是用来存储对windowContainer的修改的一个集合,windowContainer。因为应用侧是无法直接操作windowContainer的,如果应用侧需要修改windowContainer的话&#xff0c…...

安装NFS扩展

#添加helm源 helm repo add nfs-subdir-external-provisioner https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner #创建个namespace(可选,主要是为了查看资源方便) kubectl create ns nfs-sc-default #使用helm安装(10.1.129.86为NFS地址,/home/data/nfs…...

计算机网络——运输层(进程之间的通信、运输层端口,UDP与TCP、TCP详解)

运输层协议概述 进程之间的通信 运输层向它上面的应用层提供通信服务。 当网络边缘部分的两台主机使用网络核心部分的功能进行端到端的通信时,都要使用协议栈中的运输层;而网络核心部分中的路由器在转发分组时只用到下三层的功能。 Q1:我们…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

Python如何给视频添加音频和字幕

在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

Java入门学习详细版(一)

大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...