当前位置: 首页 > news >正文

微分方程(Blanchard Differential Equations 4th)中文版Section1.4

1.4 NUMERICAL TECHNIQUE: EULER’S METHOD

上一节中讨论的斜率场的几何概念与近似微分方程解的基本数值方法密切相关。给定一个初值问题
d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy=f(t,y),y(t0)=y0,
我们可以通过首先在 t y − ty- ty平面上绘制斜率,然后从初始值 ( t 0 , y 0 ) (t_0,y_0) (t0y0) 开始,通过绘制与斜率相切的图形来绘制解决方案的图形。沿着图形的每个点。在本节中,我们描述了一个自动化这个想法的数值过程。使用计算机或计算器,我们可以获得数字和图形,这些数字和图形可以近似解决初始值问题。
数值方法提供了关于解的定量信息,即使我们不能发现它们的公式。还有一个优点是大部分工作可以由机器完成。缺点是我们只能获得近似值,而不是精确解。如果我们仍然意识到这一事实并谨慎行事,那么数值方法将成为研究微分方程的强大工具。即使有可能找到解决方案的公式,也经常使用数值方法。(即使有公式,本文中的大多数微分方程解的图都是使用数值逼近绘制的。)
我们在本节中讨论的数值技术称为欧拉方法。关于欧拉方法以及其他数值方法的精度的更详细讨论将在第7章中给出。

沿斜率场逐步推进过程

为了描述欧拉方法,我们从初值问题开始
d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy=f(t,y),y(t0)=y0,
既然我们给定了 f ( t , y ) f (t,y) f(t,y),我们就可以在 t − y t-y ty 平面上绘制它的斜率。该方法的想法是从斜坡场的点 ( t 0 , y 0 ) (t_0,y_0) (t0,y0) 开始,并采取由斜坡场的切线决定的微小步骤。我们首先选择一个 (小) 步长 Δ t \Delta t Δt。近似解的斜率每 Δ t \Delta t Δt 个单位更新一次。换句话说,对于每一步,我们沿着 t t t 轴移动 Δ t \Delta t Δt 个单位。
( t 0 , y 0 ) (t_0, y_0) (t0,y0) 开始,我们的第一步是到达点 ( t 1 , y 1 ) (t_1, y_1) (t1,y1),其中 t 1 = t 0 + Δ t t_1 = t_0 + \Delta t t1=t0+Δt,并且 ( t 1 , y 1 ) (t_1, y_1) (t1,y1) 是通过 ( t 0 , y 0 ) (t_0, y_0) (t0,y0) 的直线上的点,其斜率由 ( t 0 , y 0 ) (t_0, y_0) (t0,y0) 的斜率场给出(见图1.31)。在 ( t 1 , y 1 ) (t_1, y_1) (t1,y1) 处,我们重复这一过程。沿着 t t t 轴的步长为 Δ t \Delta t Δt,其方向由 ( t 1 , y 1 ) (t_1, y_1) (t1,y1) 的斜率场确定,我们到达新点 ( t 2 , y 2 ) (t_2, y_2) (t2,y2)。新时间由 t 2 = t 1 + Δ t t_2 = t_1 + \Delta t t2=t1+Δt 给出, ( t 2 , y 2 ) (t_2, y_2) (t2,y2) 位于从 ( t 1 , y 1 ) (t_1, y_1) (t1,y1) 开始且斜率为 f ( t 1 , y 1 ) f(t_1, y_1) f(t1,y1) 的线段上。继续进行,我们使用点 ( t k , y k ) (t_k, y_k) (tk,yk) 的斜率场来确定下一个点 ( t k + 1 , y k + 1 ) (t_{k+1}, y_{k+1}) (tk+1,yk+1)
序列 y 0 , y 1 , y 2 , … y_0, y_1, y_2, \ldots y0,y1,y2, 作为在时刻 t 0 , t 1 , t 2 , … t_0, t_1, t_2, \ldots t0,t1,t2, 上解的近似值。从几何上讲,我们认为该方法是在连接 ( t k , y k ) (t_k, y_k) (tk,yk) ( t k + 1 , y k + 1 ) (t_{k+1}, y_{k+1}) (tk+1,yk+1) 的一系列小线段(见图1.32)。基本上,我们将斜率场的小片段拼接在一起,形成一个近似我们的解曲线的图形。
该方法使用由斜率场给出的切线段来逼近解的图形。因此,在每个阶段,我们都会产生一个小误差(见图1.32)。希望如果步长足够小,这些误差在继续迭代时不会失控,且所得的图形接近于我们想要的解。
在这里插入图片描述图 1.31 斜率场中的步进过程
在这里插入图片描述图1.32 精确解图像与Euler近似解的图像

Euler 方法

为了将欧拉法付诸实践,我们需要一个公式由 ( t k , y k ) (t_k, y_k) (tk,yk) 确定 ( t k + 1 , y k + 1 ) (t_{k+1}, y_{k+1}) (tk+1,yk+1)。确定 t k + 1 t_{k+1} tk+1 很简单,我们在一开始就指定步长 Δ t \Delta t Δt,所以 t k + 1 = t k + Δ t

相关文章:

微分方程(Blanchard Differential Equations 4th)中文版Section1.4

1.4 NUMERICAL TECHNIQUE: EULER’S METHOD 上一节中讨论的斜率场的几何概念与近似微分方程解的基本数值方法密切相关。给定一个初值问题 d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy​=f(t,y),y(t0​)=y0​, 我们可以通过首…...

求职Leetcode算法题(7)

1.搜索旋转排序数组 这道题要求时间复杂度为o(log n),那么第一时间想到的就是二分法,二分法有个前提条件是在有序数组下,我们发现在这个数组中存在两部分是有序的,所以我们只需要对前半部分和后半部分分别…...

ActiveMQ、RabbitMQ、Kafka、RocketMQ在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略的区别

ActiveMQ、RabbitMQ、Kafka、RocketMQ这四种消息队列在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略等方面各有其特点和差异。以下是对这些方面的详细比较: 1. 事务性消息 ActiveMQ:支持事务性消息。ActiveMQ可以基于JMS&#xff08…...

HanLP分词的使用与注意事项

1 概述 HanLP是一个自然语言处理工具包&#xff0c;它提供的主要功能如下&#xff1a; 分词转化为拼音繁转简、简转繁提取关键词提取短语提取词语自动摘要依存文法分析 下面将介绍其分词功能的使用。 2 依赖 下面是依赖的jar包。 <dependency><groupId>com.ha…...

Python 的进程、线程、协程的区别和联系是什么?

一、区别 1. 进程 • 定义&#xff1a;进程是操作系统分配资源的基本单位。 • 资源独立性&#xff1a;每个进程都有独立的内存空间&#xff0c;包括代码、数据和运行时的环境。 • 并发性&#xff1a;可以同时运行多个进程&#xff0c;操作系统通过时间片轮转等方式在不同…...

实时数据推送:Spring Boot 中两种 SSE 实战方案

在 Web 开发中&#xff0c;实时数据交互变得越来越普遍。无论是股票价格的波动、比赛比分的更新&#xff0c;还是聊天消息的传递&#xff0c;都需要服务器能够及时地将数据推送给客户端。传统的 HTTP 请求-响应模式在处理这类需求时显得力不从心&#xff0c;而服务器推送事件&a…...

数据守护者:SQL一致性检查的艺术与实践

标题&#xff1a;数据守护者&#xff1a;SQL一致性检查的艺术与实践 在数据驱动的商业世界中&#xff0c;数据的一致性是确保决策准确性和业务流程顺畅的关键。SQL作为数据查询和操作的基石&#xff0c;提供了多种工具来维护数据的一致性。本文将深入探讨如何使用SQL进行数据一…...

jenkins配置+vue打包多环境切换

jenkins配置流水线过程 1.新建item 加入相关的参数就行了。 流水线脚本设置 后端脚本 node {stage checkoutsh"""#每次打包清空工作空间目录rm -rf $workspace/*cd $workspace#到工作空间下从远端svn服务端拉取代码svn co svn://10.1.19.21/repo/技术中台/低…...

idea和jdk的安装教程

1.JDK的安装 下载 进入官网&#xff0c;找到你需要的JDK版本 Java Downloads | Oracle 中国 我这里是windows的jdk17&#xff0c;选择以下 安装 点击下一步&#xff0c;安装完成 配置环境变量 打开查看高级系统设置 在系统变量中添加两个配置 一个变量名是 JAVA_HOME …...

HTML静态网页成品作业(HTML+CSS)——电影网首页网页设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…...

大数据系列之:Flink Doris Connector,实时同步数据到Doris数据库

大数据系列之&#xff1a;Flink Doris Connector&#xff0c;实时同步数据到Doris数据库 一、版本兼容性二、使用三、Flink SQL四、DataStream五、Lookup Join六、配置通用配置项接收器配置项查找Join配置项 七、Doris 和 Flink 列类型映射八、使用Flink CDC访问Doris的示例九、…...

LabVIEW VI 多语言动态加载与运行的实现

在多语言应用程序开发中&#xff0c;确保用户界面能够根据用户的语言偏好动态切换是一个关键需求。本文通过分析一个LabVIEW程序框图&#xff0c;详细说明了如何使用LabVIEW中的属性节点和调用节点来实现VI&#xff08;虚拟仪器&#xff09;界面语言的动态加载与运行。此程序允…...

Unity引擎基础知识

目录 Unity基础知识概要 1. 创建工程 2. 工程目录介绍 3. Unity界面和五大面板 4. 游戏物体创建与操作 5. 场景和层管理 6. 组件系统 7. 脚本语言C# 8. 物理引擎和UI系统 学习资源推荐 Unity引擎中如何优化大型游戏项目的性能&#xff1f; Unity C#脚本语言的高级编…...

练习题- 探索正则表达式对象和对象匹配

正则表达式(Regular Expressions)是一种强大而灵活的文本处理工具,它允许我们通过模式匹配来处理字符串。这在数据清理、文本分析等领域有着广泛的应用。在Python中,正则表达式通过re模块提供支持,学习和掌握正则表达式对于处理复杂的文本数据至关重要。 本文将探索如何在…...

Java集合提升

1. 手写ArrayList 1.1. ArrayList底层原理细节 底层结构是一个长度可以动态增长的数组&#xff08;顺序表&#xff09;transient Object[] elementData; 特点&#xff1a;在内存中分配连续的空间&#xff0c;只存储数据&#xff0c;不存储地址信息。位置就隐含着地址。优点 节…...

uniapp 微信小程序生成水印图片

效果 源码 <template><view style"overflow: hidden;"><camera device-position"back" flash"auto" class"camera"><cover-view class"text-white padding water-mark"><cover-view class"…...

ElasticSearch相关知识点

ElasticSearch中的倒排索引是如何工作的&#xff1f; 倒排索引是ElasticSearch中用于全文检索的一种数据结构&#xff0c;与正排索引不同的是&#xff0c;正排索引将文档按照词汇顺序组织。而倒排索引是将词汇映射到包含该词汇的文档中。 在ElasticSearch中&#xff0c;倒排索…...

css 文字图片居中及网格布局

以下内容纯自已个人理解&#xff0c;直接上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...

解决ImportError: DLL load failed while importing _rust: 找不到指定的程序

解决ImportError: DLL load failed while importing _rust: 找不到指定的程序 python使用库cryptography 当 from cryptography.hazmat.bindings._rust import exceptions as rust_exceptions 时&#xff0c;会报错&#xff1a; ImportError: DLL load failed while importin…...

集合-List去重

1.利用Set去重 @Test public void distinctList() {List<String> oldList = new ArrayList<>();oldList.add("a");oldList.add("a");oldList.add("b");oldList.add("c");oldList.add("d");List<String> …...

ST-LINK USB communication error 非常有效的解决方法

文章目录 一、检查确定是ST-LINK USB communication error的问题二、关闭文件&#xff0c;打开keil软件所在文件夹&#xff0c;找到STLink文件夹&#xff0c;找到该应用程序双击 一、检查确定是ST-LINK USB communication error的问题 二、关闭文件&#xff0c;打开keil软件所在…...

探索CSS的:future-link伪类:选择指向未来文档的链接

CSS&#xff08;层叠样式表&#xff09;是Web设计中用于描述网页元素样式的语言。随着CSS4的提案&#xff0c;引入了许多新的选择器&#xff0c;其中之一是:future-link伪类。然而&#xff0c;需要注意的是&#xff0c;:future-link伪类目前还处于提议阶段&#xff0c;并没有在…...

【C++】序列与关联容器(三)map与multimap容器

【C】序列与关联容器&#xff08;三&#xff09;map与multimap容器 一、map二、multiset / multimap 一、map 树中的每个结点的类型是一个std::pair //pair的类型是<const key,value> pair是一个包含两个指针的结构体&#xff0c;第一个指针指向该节点的key&#xff0c;…...

ActiveMQ、RabbitMQ、Kafka、RocketMQ在优先级队列、延迟队列、死信队列、重试队列、消费模式、广播模式的区别

ActiveMQ、RabbitMQ、Kafka、RocketMQ这四款消息队列在优先级队列、延迟队列、死信队列、重试队列、消费模式、广播模式等方面各有其特点和差异。以下是对这些方面的详细比较&#xff1a; 1. 优先级队列 ActiveMQ&#xff1a;支持优先级队列&#xff0c;可以在发送消息时指定…...

首款会员制区块链 Geist 介绍

今天&#xff0c;Pixelcraft Studios 很高兴地宣布即将推出 Geist&#xff0c;这是一个由 Base、Arbitrum、Alchemy 以及 Aavegotchi 支持的全新 L3。 Geist 之前的代号为 “Gotchichain”&#xff0c;是首个专为游戏打造的会员专用区块链。 为什么选择 Geist&#xff1f; …...

CANoe软件中Trace窗口的筛选栏标题不显示(空白)的解决方法

文章目录 问题描述原因分析解决方案扩展知识总结问题描述 不知道什么情况,CANoe软件中Trace窗口的筛选栏标题突然不显示了,一片空白。现象如下: 虽然不影响CANoe软件的使用,但是观感上非常难受,对于强迫症患者非常不友好。 原因分析 按照常规思路,尝试了: 1、重启CAN…...

日期类代码实现-C++

一、目标 通过前面对类和对象的介绍我们可以自己通过C代码初步实现一个简单的日期类。 实现的主要操作有&#xff1a; 1.日期类的构造函数 2.日期类的拷贝构造函数&#xff08;在头文件中实现&#xff09; 3.日期类的比较运算符重载 4.日期类的计算运算符重载 5.流插入运…...

【问题记录+总结】VS Code Tex Live 2024 Latex Workshop Springer模板----更新ing

目录 Summary 道阻且长 少即是多 兵马未动粮草先行 没有万能 和一劳永逸 具体问题具体分析 心态 Detail 1、关于模板[官网] 2、settings.json 3、虫和杀虫剂 4、擦 换成Tex Studio都好了。。。 Summary 道阻且长 某中意期刊&#xff0c;只有Latex。之前只简单用过…...

Linux运维_Bash脚本_源码安装Go-1.21.11

Linux运维_Bash脚本_源码安装Go-1.21.11 Bash (Bourne Again Shell) 是一个解释器&#xff0c;负责处理 Unix 系统命令行上的命令。它是由 Brian Fox 编写的免费软件&#xff0c;并于 1989 年发布的免费软件&#xff0c;作为 Sh (Bourne Shell) 的替代品。 您可以在 Linux 和…...

ShareSDK Twitter

创建应用 1.登录Twitter控制台并通过认证 2.点击Developer Portal进入Twitter后台 3.点击Sign up for Free Account创建应用 4.配置应用信息 以下为创建过程示例&#xff0c;图中信息仅为示例&#xff0c;创建时请按照真实信息填写&#xff0c;否则无法正常使用。 权限申请…...

word2vec 如何用多个词表示一个句子

word2vec 模型通常用于将单词映射为固定大小的向量。为了使用多个词表示一个句子&#xff0c;我们可以采用以下几种方法&#xff1a; 词袋模型 (Bag of Words, BoW): 将句子中所有词的向量加起来&#xff0c;不考虑词的顺序。这种方法简单&#xff0c;但会丢失词序信息。 计算…...

IDEA中查看接口的所有实现类和具体实现类

1.IDEA中接口的所有实现类查看 1.CTRLH(hierarchy 结构) 我们选中要查看的接口 按住快捷键ctrlh 在界面右侧可以看到该接口的所有可能实现类 2.右击diagrams->show diagram 选中要查看的接口 右击选择diagrams->show diagram 即可以以图表的方式查看接口和所有实现类…...

DLL的导出和调用

动态链接库在C中非常重要&#xff0c;写了一个简单的例子用于DLL的导出和调用。 DLL的生成 头文件 #include<iostream> #include<stdexcept> using namespace std;#define TESTAPI __declspec(dllexport)// 函数定义 extern "C" {TESTAPI int add(in…...

vscode中调试cuda kernel

关于vscode中调试cpp可参考之前的博客&#xff1a;ubuntu vscode 基本设置 和 调试设置_ubuntu vscode 调试-CSDN博客 这篇我们来讲如何调试.cu的kernel&#xff0c;主要参考的是&#xff1a;https://www.zhihu.com/question/431782036/answer/2468791220 1、基本准备不多说&am…...

SQL的连接查询与pandas的对应关系

在SQL和Pandas中&#xff0c;连接查询&#xff08;join&#xff09;是处理数据集之间关系的重要工具。下面是SQL中的各种连接查询类型及其与Pandas中相应操作的对应关系&#xff1a; 1. INNER JOIN SQL: INNER JOIN 返回两个表中具有匹配值的行。 Pandas: merge() 方法的 how…...

【JS】中断和恢复任务序列

前言 封装processTasks函数&#xff0c;实现以下需求 /*** 依次顺序执行一系列任务* 所有任务全部完成后可以得到每个任务的执行结果* 需要返回两个方法&#xff0c;start用于启动任务&#xff0c;pause用于暂停任务* 每个任务具有原子性&#xff0c;即不可中断&#xff0c;只…...

CentOS系统下安装NVIDIA显卡驱动

一、安装显卡驱动 1.安装依赖项 yum -y install gcc pciutils yum -y install gcc yum -y install gcc-c yum -y install make2.查看内核版本 uname -a3.查看显卡版本 lspci | grep -i nvidia4.屏蔽系统自带的nouveau (1)查看nouveau lsmod | grep nouveau (2)打开blackl…...

Linux 与 Windows 服务器操作系统 | 全面对比

在服务器操作系统的领域&#xff0c;Linux 和 Windows 一直是两个备受关注的选择。 首先来看 Windows 操作系统。它由 Microsoft Corporation 开发&#xff0c;在桌面领域占据显著份额&#xff0c;其中 Windows 10 是使用最广泛的版本&#xff0c;广泛应用于个人计算机和企业桌…...

给既有exe程序添加一机一码验证

原文地址&#xff1a;李浩的博客 lihaohello.top 本科期间开发过一款混凝土基本构件设计程序&#xff0c;该程序是一个独立的exe可执行文件&#xff0c;采用VC静态链接MFC库编制而成。近期&#xff0c;需要为该程序添加用户注册验证的功能&#xff0c;从而避免任何用户获取该程…...

【Datawhale X 魔搭 】AI夏令营第四期大模型方向,Task2:头脑风暴会,巧灵脑筋急转弯(持续更新)

队伍名称&#xff1a;巧灵脑筋急转弯 队伍技术栈&#xff1a;python&#xff0c;LLM&#xff0c;RAG&#xff0c;大模型&#xff0c;nlp&#xff0c;Gradio&#xff0c;Vue&#xff0c;java 队友&#xff1a;知唐&#xff08;队长&#xff09;&#xff0c;我真的敲不动…...

mysql 多个外键

在MySQL中&#xff0c;一个表可以有多个外键约束&#xff0c;它们分别关联到不同的主表。在创建表时&#xff0c;可以在每个外键约束上指定不同的外键名称。以下是一个简单的例子&#xff0c;演示如何在创建表时定义多个外键&#xff1a; CREATE TABLE orders (order_id INT AU…...

解决方案上新了丨趋动科技推出基于银河麒麟操作系统的异构算力池化解决方案

趋动科技携手麒麟软件打造基于银河麒麟操作系统的异构算力池化解决方案&#xff0c;共同探索AI领域新场景。 人工智能技术作为数字经济发展的重要推手&#xff0c;在各行业业务场景中落地需要大量AI算力资源的有效保障。在IT基础设施普遍云化的今天&#xff0c;AI算力一方面需…...

14.创建一个实战maven的springboot项目

项目核心主要部分 pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://mave…...

docker部署LNMP

docker部署LNMP nginx 1.22 172.111.0.10 docker-nginx mysql 8.0.30 172.111.0.20 docker-mysql php 8.1.27 172.111.0.30 docker-php docker&#xff1a;单节点部署&#xff0c;只能在一台机器上部署&#xff0c;如果跨机器容器无法操作&#xff0c;无法通信。 做高可用…...

在Spring Boot应用中,如果你希望在访问应用时加上项目的名称或者一个特定的路径前缀

在Spring Boot应用中&#xff0c;如果你希望在访问应用时加上项目的名称或者一个特定的路径前缀 在Spring Boot应用中&#xff0c;如果你希望在访问应用时加上项目的名称或者一个特定的路径前缀&#xff0c;你可以通过配置server.servlet.context-path属性来实现。这通常在app…...

东南大学:Wi-Fi 6搭档全光以太,打造“数智东南”信息高速路

东南大学&#xff1a;Wi-Fi 6搭档全光以太&#xff0c;打造“数智东南”信息高速路 - 华为企业业务 打好ICT底座&#xff0c;平台和应用层面就会非常通畅了。首先&#xff0c;出海企业的需求既有普遍性&#xff0c;也有垂直性行业的特性需求。普遍性需求需要通信、沟通数据和传…...

C++:stack类(vector和list优缺点、deque)

目录 前言 数据结构 deque vector和list的优缺点 push pop top size empty 完整代码 前言 stack类就是数据结构中的栈 C数据结构&#xff1a;栈-CSDN博客 stack类所拥有的函数相比与string、vector和list类都少很多&#xff0c;这是因为栈这个数据结构是后进先出的…...

负载均衡、高可用

负载均衡 负载均衡&#xff08;Load Balance&#xff09;&#xff1a;可以利用多个计算机和组合进行海量请求处理&#xff0c;从而获得很高的处理效率&#xff0c;也可以用多个计算机做备份&#xff08;高可用&#xff09;&#xff0c;使得任何一个机器坏了整个系统还是能正常…...

从Retrofit支持suspend协程请求说开去

在现代Android开发中&#xff0c;异步请求已经成为不可或缺的一部分。传统的异步请求往往涉及大量的回调逻辑&#xff0c;使代码难以维护和调试。随着Kotlin协程的引入&#xff0c;异步编程得到了极大的简化。而作为最流行的网络请求库之一&#xff0c;Retrofit早在Kotlin协程的…...

深入浅出:你需要了解的用户数据报协议(UDP)

文章目录 **UDP概述****1. 无连接性****2. 尽最大努力交付****3. 面向报文****4. 多种交互通信支持****5. 较少的首部开销** **UDP报文的首部格式****详细解释每个字段** **UDP的多路分用模型****多路分用的实际应用** **检验和的计算方法****伪首部的详细内容****检验和计算步…...