当前位置: 首页 > news >正文

机器学习课程学习周报八

机器学习课程学习周报八

文章目录

  • 机器学习课程学习周报八
    • 摘要
    • Abstract
    • 一、机器学习部分
      • 1.1 self-attention的计算量
      • 1.2 人类理解代替自注意力计算
        • 1.2.1 Local Attention/Truncated Attention
        • 1.2.2 Stride Attention
        • 1.2.3 Global Attention
        • 1.2.4 聚类Query和Key
      • 1.3 自动选择自注意力计算
      • 1.4 Attention Matrix中的线性组合
      • 1.5 通过矩阵乘法推导自注意力计算
      • 1.6 Batch Normalization
    • 总结

摘要

本周的学习重点是自注意力机制的计算优化。我探讨了如何通过Local Attention、Stride Attention、Global Attention等方法减少计算量。此外,还介绍了自动选择注意力计算和Attention Matrix的线性组合方法。最后,补充了Batch Normalization的知识,为模型训练提供了更好的稳定性。

Abstract

This week’s focus is on optimizing the computation of the self-attention mechanism. I explored methods like Local Attention, Stride Attention, and Global Attention to reduce computational load. Additionally, we discussed automatic selection of attention computation and linear combinations in the Attention Matrix. Lastly, we supplemented our understanding with Batch Normalization, enhancing model training stability.

一、机器学习部分

1.1 self-attention的计算量

请添加图片描述
如果现在自注意力模型输入的序列长度为 N N N,则对应的Query为 N N N个,对应的Key也为 N N N个。它们之间相互计算关联性(即注意力分数),可以得到上图中的Attention Matrix,这个矩阵的复杂度是 N 2 {N^2} N2,当 N N N的数值很大时,该矩阵的计算量就会变得很大。因此,这一节介绍多种方法以加速计算Attention Matrix的计算。

Notice:当 N N N很大时,self-attention的计算才会主导整个模型中计算量。例如:在Transformer模型中,除了self-attention还有其他模块的计算量,self-attention模块的计算量占模型整体计算量是与 N N N有关的,当 N N N过小时,对self-attention的改进计算并不会明显提高Transformer模型的运算速度。

1.2 人类理解代替自注意力计算

根据人类对问题的理解,对Attention Matrix某些位置的值直接赋值,跳过计算步骤,从而减少计算量。

1.2.1 Local Attention/Truncated Attention

计算self-attention时,并非计算整个序列间的self-attention分数,而是只看自己和左右的邻居,其他的关联性都设定为0。下图在Attention Matrix中,表示为灰色的部分都人工设定为0,只计算蓝色部分的self-attention分数。这种方法叫做Local Attention或Truncated Attention。
请添加图片描述

Local Attention与CNN较为相似,主要体现在它们的局部关注机制上。这种机制使得模型在处理输入数据时,只关注输入数据的局部区域,而不是整体。卷积神经网络(CNN)中,卷积层通过滑动窗口的方式在输入数据上提取特征。这种操作也可以看作是一种局部关注机制,通过卷积核仅关注输入数据的局部区域来提取特征。Local attention相比于之前介绍的包含全序列的注意力,更加注重输入数据的局部关系,与卷积核的滑动也很类似。

1.2.2 Stride Attention

根据自己对问题的理解,计算局部的self-attention并不一定是左右邻居,如下图,可以是分别计算序列中两步前或两步后的关联性,也可以是分别计算序列中一步前或一步后的关联性,灰色的地方设定为0。这种方法叫做Stride Attention。

在这里插入图片描述

1.2.3 Global Attention

前面介绍的方法都是以某一个位置为中心,分别计算左右的关联性。Global Attention注重于整个序列,其会添加特殊的token到原始的序列中,特殊的token分别与整个序列计算self-attention,具体做法有两种:

  • 从原来的token序列中,选择一部分作为特殊的token。
  • 外加一部分额外的token。

在这里插入图片描述

从上图的Attention Matrix观察得到,在原始的序列中,第一和第二个位置被选择为特殊的token。从横轴的角度看,第一和第二个位置的Query与整个序列的Key分别做了self-attention。从纵轴的角度看,序列每一个位置的Query都与第一和第二位置的Key做了self-attention。灰色的位置设定为0。

在这里插入图片描述

在Big Bird中提出了Random attention并且将其与前面的Local Attention和Global Attention一并融合。

1.2.4 聚类Query和Key

在这里插入图片描述

第一步,根据相似度聚类Query和Key,上图中根据不同颜色聚类为了4类。

在这里插入图片描述

第二步,相同类之间的Query和Key才做self-attention。

1.3 自动选择自注意力计算

在这里插入图片描述

通过神经网络学习出一个0-1矩阵,深色位置代表1,浅色位置代表0。只有深色位置计算self-attention,浅色位置不计算。

在这里插入图片描述

输入序列中的每一个位置都通过一个神经网络产生一个长度为 N N N的向量,然后将这些向量拼起来得到大小为 N × N N \times N N×N的矩阵。然而现在这个由向量拼成得到的矩阵中的值,是连续值,要转换为0-1矩阵,这一部分是可以微分的,所以可以通过学习得到,具体需要看Sinkhorn Sorting Network的论文。

1.4 Attention Matrix中的线性组合

计算Attention Matrix的Rank(秩),得到Low Rank,说明该矩阵的很多列是其它列的线性组合。由此可得,实际上并不需要 N × N N \times N N×N的矩阵,目前 N × N N \times N N×N的矩阵中包含很多重复的信息,也许可以通过减少Attention Matrix的大小(主要是列数量)实现减少运算量。

在这里插入图片描述

选择具有代表性的Key,得到K个Key,即得到大小为 N × K N \times K N×K的Attention Matrix。接下来考虑self-attention这一层的输出,同样地要从N个Value中挑出具有代表性的K个Value,一个Key对应一个Value向量。然后用Value矩阵乘上Attention Matrix可以得到self-attention层的输出。

为什么我们不能挑出K个代表的Query呢?

输出序列的长度与Query的数量是一致的,如果减少Query的数量,输出序列的长度就会变短。

挑选具有代表性的Key的方法为:

卷积降维和线性组合(K个向量是N个向量的K种线性组合,下图右)

在这里插入图片描述

1.5 通过矩阵乘法推导自注意力计算

在这里插入图片描述

简要复习一下自注意力机制的矩阵计算过程:第一步,输入序列分别做三种不同的变换,得到 d × N d \times N d×N大小的Query和 d × N d \times N d×N大小的Key,其中 d d d是Query和Key的维度, N N N代表序列的长度。并得到 d ′ × N d' \times N d×N大小的Value,其中特别用 d ′ d' d表示Value的维度,是因为Value的维度可以与Query、Key不一样。第二步, K T {K^{\rm T}} KT乘上 Q Q Q得到Attention Matrix,然后通过softmax做归一化。第三步,用 V V V乘上归一化后的Attention Matrix( A ′ A' A)得到自注意力层的输出 O O O

在这里插入图片描述

如果我们先忽略softmax的操作,self-attention的计算方法就是上图中第一行的计算过程,现在考虑第二行运算,先算 V V V乘上 K T {K^{\rm T}} KT的结果,再乘上 Q Q Q,这样的计算顺序与第一行有何不同?得到的结果是一样的,运算量是不一样的。

请添加图片描述

尽管 A ( C P ) = ( A C ) P A\left( {CP} \right) = \left( {AC} \right)P A(CP)=(AC)P,但是第一种计算方式的计算量是 1 0 6 {10^6} 106,第二种计算方式的计算量的 1 0 3 {10^3} 103,两者计算量之间的差异很大。因此我们这里先忽略softmax操作,考虑self-attention中矩阵计算的改进。

请添加图片描述

根据上图证明, V ( K T Q ) V({K^{\rm T}}Q) V(KTQ)的计算量通常大于 ( V K T ) Q (V{K^{\rm T}})Q (VKT)Q的计算量。

接下来加入softmax,写出计算self-attention的数学表达式:

请添加图片描述

下面通过数学证明的角度说明更换矩阵乘法顺序,计算self-attention的过程:

请添加图片描述

还有一个问题是, exp ⁡ ( q ⋅ k ) ≈ Φ ( q ) ⋅ Φ ( k ) \exp (q \cdot k) \approx \Phi (q) \cdot \Phi (k) exp(qk)Φ(q)Φ(k)是如何实现的,具体需要参考下面的论文。

请添加图片描述

1.6 Batch Normalization

在Transformer的编码器中使用到了Layer Normalization,在上一周的周报中并将其与Batch Normalization做了比较,这里特别补充Batch Normalization的知识。

请添加图片描述

做标准化的原因是,希望能把不同维度的特征值规范到同样的数值范围,从而使得error surface比较平滑,更好训练。

请添加图片描述

Batch Normalization是对不同特征向量的同一维度,计算平均值和标准差,然后将特征值减去平均值再除以标准差,实现标准化。标准化后,同一维度上的数值的平均值是0,方差是1,接近高斯分布。

请添加图片描述

在神经网络中,输入特征 x ~ 1 {\tilde x^1} x~1 x ~ 2 {\tilde x^2} x~2 x ~ 3 {\tilde x^3} x~3已经做过了标准化,在经过 W 1 {W^1} W1层后,且输入 W 2 {W^2} W2层之前仍需要做标准化。至于是对激活函数前的 z 1 {z^1} z1 z 2 {z^2} z2 z 3 {z^3} z3还是之后的 a 1 {a^1} a1 a 2 {a^2} a2 a 3 {a^3} a3做标准化,差别不是很大。以 z 1 {z^1} z1 z 2 {z^2} z2 z 3 {z^3} z3为例, z 1 {z^1} z1 z 2 {z^2} z2 z 3 {z^3} z3都是向量,做标准化的方法如下:

请添加图片描述

μ = 1 3 ∑ i = 1 3 z i \mu = \frac{1}{3}\sum\limits_{i = 1}^3 {{z^i}} μ=31i=13zi是对向量 z i {z^i} zi中对应元素进行相加,然后取平均。 σ = 1 3 ∑ i = 1 3 ( z i − μ ) 2 \sigma = \sqrt {\frac{1}{3}\sum\limits_{i = 1}^3 {{{\left( {{z^i} - \mu } \right)}^2}} } σ=31i=13(ziμ)2 是向量 z i {z^i} zi μ \mu μ相减,然后逐元素平方,求和平均后,再对向量的逐元素开根号。如果直接看公式会有一些歧义,因为 z i {z^i} zi μ \mu μ σ \sigma σ都是向量,其中的求和,平方,开根号都是对向量中逐元素操作。最后标准化公式为:

z ~ i = z i − μ σ {{\tilde z}^i} = \frac{{{z^i} - \mu }}{\sigma } z~i=σziμ

实际上,GPU的内存不足以把整个dataset的数据一次性加载。因此,只考虑一个batch中的样本,对一个batch中的样本做Batch Normalization。在inference中,不可能等到整个batch数量的输入才做推理,具体方法为:在训练时计算 μ \mu μ σ \sigma σ的moving average,训练时的第一个batch为 μ 1 {\mu^1} μ1,第二个batch为 μ 1 {\mu^1} μ1,直到第t个batch为 μ t {\mu^t} μt,且不断地计算moving average:

μ ˉ ← p μ ˉ + ( 1 − p ) μ t \bar \mu \leftarrow p\bar \mu + \left( {1 - p} \right){\mu ^t} μˉpμˉ+(1p)μt

inference中标准化的公式变为:

z ~ i = z i − μ ˉ σ ˉ {{\tilde z}^i} = \frac{{{z^i} - \bar \mu }}{{\bar \sigma }} z~i=σˉziμˉ

总结

通过本周的学习,我对自注意力机制的优化策略有了更深入的了解,不同的注意力方法提供了多样化的计算选择,有助于提高模型的效率。下周还会围绕自注意力机制进行拓展学习。

相关文章:

机器学习课程学习周报八

机器学习课程学习周报八 文章目录 机器学习课程学习周报八摘要Abstract一、机器学习部分1.1 self-attention的计算量1.2 人类理解代替自注意力计算1.2.1 Local Attention/Truncated Attention1.2.2 Stride Attention1.2.3 Global Attention1.2.4 聚类Query和Key 1.3 自动选择自…...

福泰轴承股份有限公司进销存系统pf

TOC springboot413福泰轴承股份有限公司进销存系统pf 绪论 1.1 研究背景 现在大家正处于互联网加的时代,这个时代它就是一个信息内容无比丰富,信息处理与管理变得越加高效的网络化的时代,这个时代让大家的生活不仅变得更加地便利化&#…...

【k8s从节点报错】error: You must be logged in to the server (Unauthorized)

k8s主节点可以获取nodes节点信息,但是从节点无法获取,且报错“error: You must be logged in to the server (Unauthorized)” 排查思路: 当时证书过期了,只处理的主节点的证书过期,没有处理从节点的 kubeadm alpha …...

风清扬/基于Java语言的光伏监控系统+光伏发电预测+光伏项目+光伏运维+光伏储能项目

基于Java语言的光伏监控系统光伏发电预测光伏项目光伏运维光伏储能项目 介绍 基于Java语言的光伏监控系统光伏发电系统光伏软件系统光伏监控系统源码光伏发电系统源码 基于Java语言的光伏监控系统光伏发电预测光伏项目光伏运维光伏储能项目 安装教程 参与贡献 Fork 本仓库新…...

Datawhale X 魔搭 AI夏令营第四期 魔搭-AIGC方向全过程笔记

task1: 传送门 task2: 传送门 task3: 传送门 目录 Task1 赛题内容 可图Kolors-LoRA风格故事挑战赛 baseline要点讲解(请配合Datawhale速通教程食用) Step1 设置算例及比赛账号的报名和授权 Step2 进行赛事报名并创建PAI实例 Step3 执行baseline Step4…...

数组---怎么样定义和引用数组

一怎么定义数组 例 int a[10]; //定义了一个一维数组,数组名为a,此数组包含10个整型元素 所以我们了解到数组的基本定义为 类型符 数组名 [常量表达式] 定义数组可以包括常量和符号常量如 int [ 35 ];但是不能利用变量定义如 int n; …...

Nginx—Rewrite

目录 一、Nginx—Rewrite概述 1、常用的Nginx正则表达式 2、Rewrite功能 3、Rewrite跳转实现 4、Rewrite执行顺序和语法格式 二、location概述 1、location分类 2、location 常用的匹配规则 3、location 优先级 案例一: 案例二: 案例三&…...

《深入浅出WPF》读书笔记.5控件与布局(上)

《深入浅出WPF》读书笔记.5控件与布局(上) 背景 深入浅出WPF书籍学习笔记附代码。WPF中数据是核心是主动的,UI是数据的表达是被动的。 程序的本质是数据算法;控件的本质是数据行为; 5.控件与布局 一、6类控件派生关系 1.布局控件:可以容纳多个控件…...

二叉树的判断

二叉树的判断 判断一颗二叉树是不是搜索二叉树 (左边的比根小,右边的比根大) 中序遍历一下,如果是的话就一定是升序的 如何判断一颗二叉树是否是完全二叉树 1.遍历任意的节点时候,如果返回右孩子没有左孩子&#x…...

Hive3:常用的内置函数

1、查看函数列表 -- 查看所有可用函数 show functions; -- 查看count函数使用方式 describe function extended count;2、数学函数 -- round 取整,设置小数精度 select round(3.1415926); -- 取整(四舍五入) select round(3.1415926, 4); -- 设置小数精度4位(四…...

设计模式---构建者模式(Builder Pattern)

构建者模式(Builder Pattern) 是一种创建型设计模式,旨在将复杂对象的构建过程与其表示分离。它允许使用相同的构建过程创建不同的表示。该模式通常用于构建复杂对象,这些对象由多个部分组成或具有多个可选属性。 构建者模式的核…...

Pytorch中transform的应用

在PyTorch中,transforms模块主要用于对图像进行预处理和数据增强,以便于训练深度学习模型。这些转换操作可以包括裁剪、缩放、旋转、翻转等,以及对图像进行标准化处理。下面将详细介绍一些常用的transforms操作及其应用。 1. 常用的transfor…...

okular阅读软件简介

okular阅读软件官网:https://okular.kde.org/zh-cn/ Okular 是一款由 KDE 开发的跨平台文档阅读器,以其功能丰富、轻巧快速而著称。它支持多种文件格式,包括 PDF、EPub、DjVu、MD 文档,以及 JPEG、PNG、GIF、Tiff 和 WebP 图像&a…...

【书生大模型实战营(暑假场)闯关材料】基础岛:第1关 书生大模型全链路开源体系

【书生大模型实战营(暑假场)闯关材料】基础岛:第1关 书生大模型全链路开源体系 简介一、背景介绍1.1 背景介绍1.2 全链路开源开放体系的优势 二、全链路开源开放体系的主要特点2.1 模型组件的公开和共享2.2 数据集的公开和共享2.3 模型的互操…...

掌握抽象工厂模式:打造灵活且强大的跨平台产品族

抽象工厂模式是一种创建型设计模式,它的核心思想是提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。这种模式通过使用抽象工厂来封装和隔离具体产品的创建过程,使得客户端可以通过工厂接口来创建一族产品,从…...

【Hadoop】建立圈内组件的宏观认识(大纲版)

Hadoop生态圈解析:各组件的主要功能及作用详解 Hadoop生态圈是由一系列开源组件组成的,这些组件共同构建了一个大规模分布式计算和存储平台。 01存储类型组件 HDFS Hadoop体系的核心组件之一,它是一个分布式文件系统,被设计用于存…...

NFS主从同步Rsync、sersync2

准备工作检查selinux 防火墙 #关闭 selinux sed -i s/^SELINUX.*/SELINUXdisabled/ /etc/selinux/config #关闭防火墙 systemctl stop firewalld;systemctl disable firewalld1.安装nfs相关包 # 所有节点安装nfs相关包 yum install nfs-utils -y systemctl enable nfs-utils …...

uniapp项目中,在原有数据中增加选中的状态,数据不改变

uniapp项目中,在原有数据中增加选中的状态,选中后打印的数据显示有变化,然而文本的数据并没有发生变化 看代码 export default {data() {return {thicate: [{ id: 1, text: "Item 1" },{ id: 2, text: "Item 2" },{ id…...

WPF自定义控件

控件模板 顾名思义就是在原有的控件上进行模版修改成自己需要的样式 把ProgressBar修改为一个水液面的进度条 <Window x:Class"XH.CustomLesson.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://s…...

Java中的全局异常处理器 -- GlobalExceptionHandler

开发记录&#xff1a;全局异常处理器笔记 import lombok.extern.slf4j.Slf4j; import org.mybatis.spring.MyBatisSystemException; import org.springframework.beans.factory.annotation.Value; import org.springframework.data.redis.RedisConnectionFailureException; im…...

R语言文本挖掘-万字详细解析tm包

tm包&#xff08;Text Mining Package&#xff09;是R语言中用于文本挖掘的强大工具包&#xff0c;它提供了一系列的功能来处理和分析文本数据。偶然看到这个包&#xff0c;我们一起看看其中的基本功能&#xff1a; 数据载入&#xff1a;tm包支持从多种数据源载入文本数据&…...

JWT中的Token

1.JWT是什么&#xff1f; jwt&#xff08;json web token的缩写&#xff09;是一个开放标准&#xff08;rfc7519&#xff09;&#xff0c;它定义了一种紧凑的、自包含的方式&#xff0c;用于在各方之间以json对象安全地传输信息&#xff0c;此信息可以验证和信任&#xff0c;因…...

苹果在iOS 18.1中向第三方开发者开放iPhone的NFC芯片

苹果公司今天宣布&#xff0c;开发者很快就能首次在自己的应用程序中提供 NFC 交易功能&#xff0c;而目前这主要是Apple Pay独有的功能。从今年晚些时候的 iOS 18.1 开始&#xff0c;开发者将可以使用新的 API 提供独立于 Apple Pay 和 Apple Wallet 的应用内非接触式交易。 这…...

系统开发之禁止卸载应用名单

本文目的主要是记录自己系统&#xff08;Android7.1系统&#xff09;开发实现代码&#xff0c;以便后期通用的功能可以直接使用&#xff0c;不需要再去通过搜索然后筛选再验证的繁琐流程&#xff0c;大大减小自己的开发时间。 我实现思路是在系统内新增自己的数据库用来记录禁止…...

wait 和 notify

目录 wait() 方法 notify() 方法 notifyAll() 方法 nofity 和 notifyAll wait 和 notify wait 和 sleep 的区别 wait 和 join 的区别 由于线程之间是抢占式执行的&#xff0c;因此&#xff0c;线程之间执行的先后顺序难以预知&#xff0c;但是&#xff0c;在实际开发中&…...

docker 启动 mongo,redis,nacos.

docker run --name mymongodb -e MONGO_INITDB_ROOT_USERNAMEadmin -e MONGO_INITDB_ROOT_PASSWORDXiaoyusadsad -p 27017:27017 -v /path/to/mongo-data:/data/db -d mongodb/mongodb-community-server:4.4.18-ubuntu2004-v 的目录必须是绝对目录 目录必须 chmod 777 /path/…...

Docker Swarm 搭建

Docker Swarm 搭建 1. 环境介绍 操作系统Centos 7Centos 7Centos 7内核版本Linux 3.10.0-957.el7.x86_64Linux 3.10.0-957.el7.x86_64Linux 3.10.0-957.el7.x86_64主机名称swarm-managerswarm-worker1swarm-worker2IP192.168.1.100192.168.1.200192.168.1.250Docker Domain20…...

浅述TSINGSEE青犀EasyCVR视频汇聚平台与海康安防平台的区别对比

在我们的很多项目中都遇到过用户的咨询&#xff1a;TSINGSEE青犀EasyCVR视频汇聚平台与海康平台的区别在哪里&#xff1f;确实&#xff0c;在安防视频监控领域&#xff0c;EasyCVR视频汇聚平台与海康威视平台是两个备受关注的选择。它们各自具有独特的功能和优势&#xff0c;适…...

设计模式系列:策略模式的设计与实践

一、背景 策略模式&#xff08;Strategy Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一系列的算法&#xff0c;并将每一个算法封装起来&#xff0c;使它们可以相互替换。策略模式让算法的变化独立于使用算法的客户。 二、结构 策略模式主要包含三个角色&…...

数据挖掘之数据预处理

数据预处理是数据挖掘中的一个关键步骤&#xff0c;它的主要目的是对原始数据进行清洗、转换和格式化&#xff0c;以确保其质量和一致性&#xff0c;从而为后续的数据挖掘任务&#xff08;如分类、回归、聚类等&#xff09;提供可靠的数据基础。数据预处理一般包括以下几个主要…...

RocketMQ核心知识点整理,值得收藏!

1. 基本概念 Topic: 消息类别的集合&#xff0c;如订单消息发送到order_topic。标签&#xff08;Tag&#xff09;: 同一Topic下区分不同消息的标志&#xff0c;实现精细化消息管理。ConsumeGroup: 消息消费组&#xff0c;可订阅多个Topic&#xff0c;一个Topic可被多个消费组订…...

微信小程序骨架屏

骨架屏是常用的一种优化方案&#xff0c;针对于页面还未加载完时给用户的一种反馈方式。如果自己要写骨架屏有点复杂因为页面的元素过多且不稳定&#xff0c;这边直接使用微信开发工具生成骨架屏。也不只有微信开发工具有像常用的抖音开发工具&#xff0c;字节开发工具都有对应…...

Window下node安装以及配置

在 Windows 下安装 Node.js 非常简单&#xff0c;你可以通过官方提供的安装程序或者使用多版本管理工具&#xff08;如 NVM-Win&#xff09;来进行安装。下面是两种方法的具体步骤&#xff1a; 1. 安装 Node.js程序 步骤如下&#xff1a; 访问官方网站&#xff1a; 访问 Node…...

校园疫情防控系统--论文pf

TOC springboot432校园疫情防控系统--论文pf 课题的来源 2019年在我国武汉爆发了一场规模非常庞大、传播速度十分迅速、对人体危害及其严重的新冠肺炎疫情。引发此次急性感染性新冠肺炎疫情的冠状病毒传播性较强&#xff0c;其传播主要是通过呼吸道飞沫和密切接触这两个途径…...

在Debian 9上使用Apt安装Java的方法

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 介绍 Java 和 JVM&#xff08;Java 虚拟机&#xff09;是许多软件的必备组件&#xff0c;包括 Tomcat、Jetty、Glassfish、Cassandra 和…...

人工智能在网络安全中的三大支柱

人工智能 (AI) 席卷了网络安全行业&#xff0c;各种供应商都在努力将 AI 融入其解决方案中。但 AI 与安全之间的关系不仅仅在于实现 AI 功能&#xff0c;还在于攻击者和防御者如何利用该技术改变现代威胁形势。它还涉及如何开发、更新和保护这些 AI 模型。如今&#xff0c;网络…...

rk3568mpp终端学习笔记

RK3568Terminal封装MppGraph 通过脚本取和设置音量/zigsun/bin/linux/bin.debug.Linux.rk3568/get_record_voice_value.sh /zigsun/bin/linux/bin.debug.Linux.rk3568/set_record_voice_value.sh class RK3568Terminal : public IAVLinkManager, p…...

【C++继承】赋值兼容转换作用域派生类的默认成员函数

1.继承的概念 继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段&#xff0c;它允许程序员在保持原有类特性的基础上进行扩展&#xff0c;增加功能&#xff0c;这样产生新的类&#xff0c;称派生类(或子类)。继承呈现了面向对象程序设计的层次结构&#xf…...

HTML5+JavaScript绘制彩虹和云朵

HTML5JavaScript绘制彩虹和云朵 彩虹&#xff0c;简称虹&#xff0c;是气象中的一种光学现象&#xff0c;当太阳光照射到半空中的水滴&#xff0c;光线被折射及反射&#xff0c;在天空上形成拱形的七彩光谱&#xff0c;由外圈至内圈呈红、橙、黄、绿、蓝、靛、紫七种颜色。事实…...

MySQL——单表查询(二)按条件查询(2)带 IN 关键字的查询

IN 关键字用于判断某个字段的值是否在指定集合中&#xff0c;如果字段的值在集合中&#xff0c;则满足条件&#xff0c;该字段所在的记录将被查询出来。其语法格式如下所示&#xff1a; SELECT *|字段名 1,字段名 2,… FROM 表名 WHERE 字段名 [NOT〕IN(元素 1,元素 2,…) 在上…...

【mysql】mysql 用户管理---创建、权限管理等等

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》&#xff1a;python零基础入门学习 《python运维脚本》&#xff1a; python运维脚本实践 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8…...

本地服务器物理机中redis设置、取消密码

1.服务器物理机上redis的操作【服务器中操作】 &#xff08;1&#xff09;首先先看一下当前运行中的redis实例&#xff1a; [rootiZuf67k70ucx14s6zcv54dZ var]# ps aux | grep redis-server因为我这里有两个实例在运行&#xff0c;即物理机上的redis和docker中的redis&…...

关于xilinx的FFTIP的使用和仿真

工具&#xff1a;vivado2018.3&#xff0c;modelsim10.6d 场景&#xff1a;在进行数据进行频谱分析的时候&#xff0c;使用FPGA来完成FFT的计算可以加快数据的计算速度。 下面使用仿真完成DDS产生的数据的FFT以及IFFT。原始数据使用DDSIP产生&#xff0c;通过IP产生的波形数据…...

ant design pro 如何去保存颜色

上图 就是实现这样的效果 后端是这样的&#xff0c;这个颜色肯定是存到字符串里的 这是第一步 import mongoose, { Schema, Document } from mongoose;interface IDiscountCard extends Document {title: string;subtitle: string;image: string;shopUrl: string;bgColor: s…...

【Hadoop】建立圈内组件的宏观认识

01存储02计算03调度04其他05回忆 众多组件们构建了大规模分布式计算和存储平台。本文介绍Hadoop生态圈中各个组件的主要功能和作用&#xff0c;辅助学者理解每个组件的定位和用途&#xff0c;从而建立对圈内组件的宏观认识。梳理清楚HDFS、MapReduce、YARN、Hive、HBase、Spark…...

C++:命名空间与输入输出

目录 前言 一、命名空间 1.1 namespace的价值 1.2 namespace的定义 1.3 命名空间的使用 二、C输入&输出 前言 C是一种面向对象的计算机程序设计语言&#xff0c;‌它扩展了C语言的功能&#xff0c;‌并引入了面向对象编程的概念&#xff0c;‌如类、‌继承和多态等&a…...

Azure DevOps Server 数据库日志已满,TF30042: The database is full

Contents 1. 问题描述2. 处理方式 2.1 系统备份2.2 收缩日志2.3 恢复模式2.4 日志增长无法控制 1. 问题描述 Azure DevOps Server 作为微软的软件开发管理平台产品&#xff0c;理所当然地使用了微软的数据库软件SQL Server。 在一个大型的开发团队中&#xff0c;Azure DevOps S…...

[C#]OpenCvSharp 实现Bitmap和Mat的格式相互转换

//转为 bitmap方法一&#xff1a; Bitmap map OpenCvSharp.Extensions.BitmapConverter.ToBitmap(mat); process_pictureBox.Image map; //转为 bitmap方法二&#xff1a; Bitmap map new Bitmap(mat.ToMemoryStream()); process_pictureBox.Image map; //Image img 转为…...

【区块链+金融服务】基于区块链的供应链金融系统 | FISCO BCOS应用案例

传统供应链金融存在着信息不对称、信任问题和繁琐流程等弊端。为了解决这些问题&#xff0c;京北方搭建了基于区块链 的供应链金融系统&#xff0c;提供了更高效、透明、安全和可信的交易环境。 系 统 采 用 FISCO BCOS 为 底 层 链&#xff0c; 技 术 栈 使 用 Java 语 言 进…...

AI语言大模型商业价值深度解析

点击蓝字 关注我 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;特别是深度学习算法的进步&#xff0c;AI语言大模型在自然语言处理领域的表现日益突出。国内外多种语言大模型如&#xff1a;OpenAi 的 ChatGpt&#xff0c;阿里通义千问&#xff0c;百度文心…...