当前位置: 首页 > news >正文

CNN代码实战

CNN的原理

从 DNN 到 CNN
(1)卷积层与汇聚
⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。
⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。
(2)CNN:专攻多维数据
在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

相关文章:

CNN代码实战

CNN的原理 从 DNN 到 CNN (1)卷积层与汇聚 ⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚&#xff08…...

迁移学习代码复现

一、前言 说来可能令人难以置信,迁移学习技术在实践中是非常简单的,我们仅需要保留训练好的神经网络整体或者部分网络,再在使用迁移学习的情况下把保留的模型重新加载到内存中,就完成了迁移的过程。之后,我们就可以像训练普通神经网络那样训练迁移过来的神经网络了。 我们…...

Elasticsearch(ES)常用命令

常用运维命令 一、基本命令1.1、查看集群的健康状态1.2、查看节点信息1.3、查看索引列表1.4、创建索引1.5、删除索引1.6、关闭索引1.7、打开索引1.8、查看集群资源使用情况(各个节点的状态,包括磁盘,heap,ram的使用情况&#xff0…...

C/C++ 不定参函数

C语言不定参函数 函数用法总结 Va_list 作用:类型定义,生命一个变量,该变量被用来访问传递给不定参函数的可变参数列表用法:供后续函数进调用,通过该变量访问参数列表 typedefchar* va_list; va_start 作用&#xff…...

C语言——函数专题

1.概念 在C语言中引入函数的概念,有些翻译为子程序。C语言中的函数就是一个完成某项特定任务的一小段代码,这个代码是有特殊的写法和调用方法的。一般我们可以分为两种函数:库函数和自定义函数。 2.库函数 C语言国际标准ANSIC规定了一些常…...

springboot打可执行jar包

1. pom文件如下 <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><m…...

【SQL】科目种类

目录 题目 分析 代码 题目 表: Teacher ------------------- | Column Name | Type | ------------------- | teacher_id | int | | subject_id | int | | dept_id | int | ------------------- 在 SQL 中&#xff0c;(subject_id, dept_id) 是该表的主键。 该表…...

【深度学习】【语音】TTS,最新TTS模型概览,扩散模型TTS,MeloTTS、StyleTTS2、Matcha-TTS

文章目录 基础介绍对比基础介绍 MeloTTS: MeloTTS 是 MyShell.ai 开发的一个多语言语音合成模型,支持包括英语、西班牙语、法语、中文、日语和韩语等多种语言。它以高质量的语音合成为特色,尤其擅长处理中英混合内容。该模型优化了在 CPU 上的实时推理能力,使其在多种应用场…...

【论文笔记】LION: Linear Group RNN for 3D Object Detection in Point Clouds

原文链接&#xff1a;https://arxiv.org/abs/2407.18232 简介&#xff1a;Transformer在3D点云感知任务中有二次复杂度&#xff0c;难以进行长距离关系建模。线性RNN则计算复杂度较低&#xff0c;适合进行长距离关系建模。本文提出基于窗口的网络线性组RNN&#xff08;即对分组…...

打造高可用集群的基石:深度解析Keepalived实践与优化

高可用集群 集群类型 集群类型主要分为负载均衡集群&#xff08;LB&#xff09;、高可用集群&#xff08;HA&#xff09;和高性能计算集群&#xff08;HPC&#xff09;三大类。每种集群类型都有其特定的应用场景和优势。 1. 负载均衡集群&#xff08;LB&#xff09; 负载均衡集…...

Web大学生网页作业成品——环保主题介绍网页网站设计与实现(HTML+CSS)(5个页面)

&#x1f389;&#x1f389;&#x1f389; 常见网页设计作业题材有**汽车、环保、明星、文化、国家、抗疫、景点、人物、体育、植物、公益、图书、节日、游戏、商城、旅游、家乡、学校、电影、动漫、非遗、动物、个人、企业、美食、婚纱、其他**等网页设计题目, 可满足大学生网…...

Qt登录窗口设计

widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QIcon> //图标类 #include <QPushButton> #include <QLineEdit> //行编辑 #include <QLabel> #include <QTextEdit> #include <QMovie>class Widge…...

探索数据矿藏:我的AI大模型与数据挖掘实战经验分享

&#x1f680; 探索数据矿藏&#xff1a;我的AI大模型与数据挖掘实战经验分享 &#x1f496; 前言&#xff1a;数据的金矿&#xff0c;AI的翅膀 在人工智能的浪潮中&#xff0c;我有幸作为项目负责人&#xff0c;带领团队深入挖掘数据的潜力&#xff0c;利用AI大模型的力量&am…...

linux C语言strcat函数及相关函数

讯飞星火 strcat函数是C语言中的一个字符串处理函数,用于将一个字符串追加到另一个字符串的末尾。它的原型如下: char *strcat(char *dest, const char *src);参数说明: dest:目标字符串,即要将src字符串追加到这个字符串的末尾。src:源字符串,即要追加到dest字符串末…...

使用 sort 进行文本文件处理

sort 使用经验笔记 一、简介 sort 是一个命令行工具&#xff0c;用于对文本文件中的行进行排序。它广泛应用于 Unix/Linux 系统中&#xff0c;可以用来对文件的内容进行简单的排序操作&#xff0c;也可以与其他命令结合使用来完成更复杂的任务。 二、基本用法 排序文件: sor…...

HarmonyOS笔记4:从云数据库获取数据

移动应用获取数据的方式主要有&#xff1a; 1.从网络中获取数据接口API。 2.从华为云数据库获取云数据库的资源。 3.从移动终端直接获取本地的数据 在HarmonyOS笔记3中已经完成了方式一从网络中获取数据接口API的方式。在本篇笔记中&#xff0c;将讨论从云数据库中获取数据。 因…...

QT5生成独立运行的exe文件

目录 1 生成独立运行的exe文件1.1 设置工程Release版本可执行文件存储路径1.2 将工程编译成Release版本 2 使用QT5自带的windeployqt拷贝软件运行依赖项3 将程序打包成一个独立的可执行软件exe4 解决QT5 This application failed to start because no Qt platform plugin could…...

LabVIEW光纤水听器闭环系统

开发了一种利用LabVIEW软件开发的干涉型光纤水听器闭环工作点控制系统。该系统通过调节光源频率和非平衡干涉仪的光程差&#xff0c;实现了工作点的精确控制&#xff0c;从而提高系统的稳定性和检测精度&#xff0c;避免了使用压电陶瓷&#xff0c;使操作更加简便。 项目背景 …...

Shell——流程控制语句(if、case、for、while等)

在 Shell 编程中&#xff0c;流程控制语句用于控制脚本的执行顺序和逻辑。这些语句包括 if、case、for、while 等&#xff0c;它们的使用可以使脚本实现更复杂的逻辑。以下是它们的详细说明和语法结构&#xff1a; 1. if 语句 if 语句用于条件判断&#xff0c;执行符合条件的…...

【redis的大key问题】

在使用 Redis 的过程中&#xff0c;如果未能及时发现并处理 Big keys&#xff08;下文称为“大Key”&#xff09;&#xff0c;可能会导致服务性能下降、用户体验变差&#xff0c;甚至引发大面积故障。 本文将介绍大Key产生的原因、其可能引发的问题及如何快速找出大Key并将其优…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...