当前位置: 首页 > news >正文

洛谷 CF295D Greg and Caves

题目来源于:洛谷

题目本质:动态规划dp,枚举

解题思路:将整个洞分成两半,一半递增,一半递减。我们分别 DP 求值,最后合并。状态转移方程为:dpi,j​=k=2∑j​(j−k+1)dpi−1,k​+1。枚举极大最长行区间来代替最长行。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
const int N=2000,M=N;
int n,m;
int dp[N+1][M+1];
int Sum[N+1][M+1],Sumk[N+1][M+1];
int sum[N+2];
int main(){cin>>n>>m;for(int i=2;i<=m;i++){dp[1][i]=1;Sum[1][i]=(Sum[1][i-1]+dp[1][i])%mod,Sumk[1][i]=(Sumk[1][i-1]-1ll*i*dp[1][i])%mod;}for(int i=2;i<=n;i++){for(int j=2;j<=m;j++){dp[i][j]=(1ll*(j+1)*Sum[i-1][j]+Sumk[i-1][j]+1)%mod;Sum[i][j]=(Sum[i][j-1]+dp[i][j])%mod;Sumk[i][j]=(Sumk[i][j-1]-1ll*j*dp[i][j])%mod;}}int ans=0;for(int k=2;k<=m;k++){for(int j=n;j;j--){sum[j]=(1ll*sum[j+1]+dp[n-j+1][k]-dp[n-j][k])%mod;}for(int i=1;i<=n;i++){(ans+=1ll*(m-k+1)*(dp[i][k]-dp[i-1][k])%mod*sum[i]%mod)%=mod;}}cout<<(ans+mod)%mod;return 0;
}

相关文章:

洛谷 CF295D Greg and Caves

题目来源于&#xff1a;洛谷 题目本质&#xff1a;动态规划dp&#xff0c;枚举 解题思路&#xff1a;将整个洞分成两半&#xff0c;一半递增&#xff0c;一半递减。我们分别 DP 求值&#xff0c;最后合并。状态转移方程为&#xff1a;dpi,j​k2∑j​(j−k1)dpi−1,k​1。枚举极…...

【图像处理】在图像处理算法开发中,有哪些常见的主观评价指标和客观评价指标?

主观评价指标 在图像处理算法开发中&#xff0c;主观评价指标依赖于观察者的个人感受和判断&#xff0c;通常用于评估图像的视觉质量。以下是一些常见的主观评价指标&#xff1a; 平均意见分数 (Mean Opinion Score, MOS)&#xff1a;通过收集多个评价者的评分并计算平均值来评…...

从零开始学cv-6:图像的灰度变换

文章目录 一&#xff0c;简介&#xff1a;二、图像的线性变换三、分段线性变换四&#xff0c;非线性变换4.1 对数变换4.2 Gamma变换 五&#xff0c;效果: 一&#xff0c;简介&#xff1a; 图像灰度变换涉及对图像中每个像素的灰度值执行数学运算&#xff0c;进而调整图像的视觉…...

使用Apache POI和POI-OOXML实现word模板文档自动填充功能

最近接到一个新的需求&#xff0c;用户创建好模板文件保存到模板库&#xff0c;然后使用在线文档编辑器打开模板时&#xff0c;将系统数据填充到模板文件并生成新的word文件&#xff0c;然后在线编辑&#xff0c;研究使用Apache POI和POI-OOXML实现了这个功能。 Maven依赖 <…...

【HarmonyOS NEXT星河版开发学习】综合测试案例-各平台评论部分

目录 前言 功能展示 整体页面布局 最新和最热 写评论 点赞功能 界面构建 初始数据的准备 列表项部分的渲染 底部区域 index部分 知识点概述 List组件 List组件简介 ListItem组件详解 ListItemGroup组件介绍 ForEach循环渲染 列表分割线设置 列表排列方向设…...

垂直行业数字化表现抢眼 亚信科技全年利润展望乐观

大数据产业创新服务媒体 ——聚焦数据 改变商业 2024年8月14日&#xff0c;亚信科技控股有限公司&#xff08;股票代码&#xff1a;01675.HK&#xff09;公布了公司截至2024年6月30日的中期业绩。 财报数据显示&#xff0c;2024年上半年&#xff0c;亚信科技的营业收入为人民币…...

EmguCV学习笔记 VB.Net 4.1 颜色变换

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 教程VB.net版本请访问&#xff1a;EmguCV学习笔记 VB.Net 目录-CSDN博客 教程C#版本请访问&#xff1a;EmguCV学习笔记 C# 目录-CSD…...

【MySQL进阶之路】表结构的操作

目录 创建表 查看表 查看数据库有哪些表 查看表结构 查看表的详细信息 修改表 表的重命名 添加一列 修改某一列的属性 删除某一列 对列进行重命名 删除表 个人主页&#xff1a;东洛的克莱斯韦克-CSDN博客 【MySQL进阶之路】MySQL基础——从零认识MySQL-CSDN博客 创…...

3分钟搞定PDF转PPT!你一定要知道的3款转换神器!

在数字办公成为主流的当下&#xff0c;我们每天会收到各类基于数字化方式存储的办公文档&#xff0c;如PDF、PPT、Word、Excel文档等。 日常处理这些文档时&#xff0c;经常需要在不同格式的文档之间进行切换和转换&#xff0c;其中将PDF转换为PPT就是一个非常高频的需求&…...

【EasyExcel】导出excel-设置动态表头并导出数据

需求背景&#xff1a; 导出excel的设置某些表头动态导出(可以根据筛选条件或一些属性的数据量)&#xff0c;方便导出后用户查看想看的信息。 一、技术选型&#xff1a; easyExcel的原生数据处理 二、方案设计&#xff1a; 根据EasyExcel支持的表头List<List<String>…...

深入探索 Elasticsearch 8:新特性与核心原理剖析(上)

深入探索 Elasticsearch 8&#xff1a;新特性与核心原理剖析 目录 一、引言 &#xff08;二&#xff09;版本 8 的重要意义 二、Elasticsearch 8 的新特性 三、Elasticsearch 的核心原理 一、引言 &#xff08;一&#xff09;Elasticsearch 简介 在大数据处理和搜索领域…...

瑜伽馆预约小程序,在线预约,提高商业价值

随着大众生活质量的提高&#xff0c;对休闲运动的关注逐渐加大&#xff0c;瑜伽作为一种身心放松、改善体态的运动&#xff0c;深受女性用户的喜爱。目前&#xff0c;各大瑜伽馆开始结合数字化&#xff0c;建立了新型的线上小程序&#xff0c;帮助大众快速预约体验瑜伽&#xf…...

Python--数据类型转换

在Python中&#xff0c;数据类型的转换是一个常见的操作&#xff0c;涉及将一种数据类型转换为另一种数据类型。Python提供了多种内置函数用于执行这种转换&#xff0c;如 int()、str()、float()、list()、tuple()、set()、dict() 等。下面详细讨论Python的基本数据类型及它们之…...

域控ntdsutil修改架构、域命名、PDC、RID、结构主机

#笔记记录# FSMO盒修改 1、提示访问特权不够&#xff0c;不能执行该操作&#xff0c;0x2098 清除缓存账号密码并修改新架构管理员账号密码即可。 背景&#xff1a;更替架构主机、域命名主机 C:\Windows\system32>ntdsutil ntdsutil: roles fsmo maintenance: ?? …...

解决 Swift 6 全局变量不能满足并发安全(concurrency-safe)读写的问题

概述 WWDC 24 终于在 Swift 十岁生日发布了全新的 Swift 6。这不仅意味着 Swift 进入了全新的“大”版本时代&#xff0c;而且 Swift 编译器终于做到了并发代码执行的“绝对安全”。 不过&#xff0c;从 Swift 5 一步迈入“新时代”的小伙伴们可能对新的并发检查有些许“水土不…...

迈入退休生活,全职开发ue独立游戏上架steam

决定退休了。算了算睡后收入&#xff0c;也可以达到每月一万一&#xff0c;正好可以养家糊口。 既然退休了&#xff0c;那就做些想做的事情&#xff0c;别人养花养草&#xff0c;而我打算开发独立游戏上架steam。 一&#xff0c;盘点下目前的技术体系。 1&#xff0c;图形学底…...

什么是光伏气象站——仁科测控

【仁科测控&#xff0c;品质保障】光伏气象站&#xff0c;‌这一专门为光伏发电系统设计的监测设备&#xff0c;‌其核心能力在于精确且实时地捕捉那些对光伏发电效率产生关键影响的气象因素。‌这些数据不仅为评估光伏电站的发电性能提供了重要依据&#xff0c;‌更是优化运维…...

webshell免杀--免杀入门

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文主要整理webshell免杀的一些基础思路 入门级&#xff0c;不是很深入&#xff0c;主要是整理相关概念 免杀对象 1.各类杀毒软件 类似360&#xff0c;火绒等&#xff0c;查杀己方webshell的软件。 2.各类流量…...

Linux---02---系统目录及文件基本操作命令

课程回顾 操作系统 虚拟机安装 本章重点 Linux系统目录结构 常用命令 熟练区分Linux下各层目录的作用 熟练掌握Linux的常用命令&#xff08;文件命令、时间命令等&#xff09; 一、Linux系统目录结构 1.1 目录结构 /&#xff1a; 根目录&#xff0c;一般根目录下只存放…...

CSP-J/S第一轮初赛模拟赛试题

本模拟试题为本人自创&#xff0c;由于发布在 LG 所以就直接放入链接。 非经允许&#xff0c;不得转载。 本套模拟题只供大家练习使用&#xff0c;不保证难度与真实 CSP-J/S 完全符合。 本模拟赛为专业CSP类型的模拟赛&#xff0c;不存在错题、超出知识的题目。 CSP-J/S 20…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...