当前位置: 首页 > news >正文

Connectionist Logic Systems and Hybrid Systems by Translation

Connectionist Logic Systems

Definition:
Connectionist Logic Systems (CLS) are computational models that combine elements of connectionism (neural networks) with symbolic logic. These systems aim to leverage the strengths of both paradigms—connectionism’s ability to process information in a distributed, parallel manner and symbolic logic’s capacity for clear, rule-based reasoning. Essentially, CLS integrates neural networks’ learning and pattern recognition capabilities with the structured reasoning of logical systems.

History:
The concept of combining neural networks with logic has been explored since the 1980s, coinciding with the resurgence of neural network research. Early work in this area attempted to address the limitations of pure neural networks, such as their lack of transparency and difficulties in performing symbolic reasoning tasks. Researchers began developing models that could perform logical inference using the distributed representations characteristic of neural networks.

Examples:

  1. Neural-Symbolic Integration Models: These models represent logical formulas within a neural network, enabling the network to learn and reason about logical structures. For instance, the Neural-Symbolic Learning and Reasoning (NSLR) framework combines neural learning with logical deduction.

  2. Hopfield Networks: While not a direct example of CLS, Hopfield networks have been used in connectionist logic systems to perform associative memory tasks that resemble logical operations.

In Connectionist Logic Systems, the basic structure integrates neural networks with symbolic logic. The neural network learns to represent and process logical formulas and can perform logical inference. Here’s a simplified diagram:

+-----------------------------------+
|                                   |
|        Logical Representation     |
|   (e.g., logical formulas, rules) |
|                                   |
+------------------+----------------+|v
+-----------------------------------+
|                                   |
|   Neural Network (Connectionist)  |
|                                   |
|   +---------------------------+  |
|   | Logical Inference Layer    |  |
|   | (encodes logical rules)    |  |
|   +---------------------------+  |
|                                   |
|   +---------------------------+  |
|   | Learning and Reasoning     |  |
|   | (trains on data)           |  |
|   +---------------------------+  |
|                                   |
+-----------------------------------+|v
+-----------------------------------+
|                                   |
|      Output (Logical Reasoning)   |
|                                   |
+-----------------------------------+

Structure Overview:

  • Logical Representation: Symbolic logical formulas or rules are represented in a way that can be processed by a neural network.
  • Neural Network: The network consists of layers where one or more layers are specifically designed to encode and perform logical inference.
  • Output: The system outputs reasoning results, which could be logical deductions or decisions made by integrating both symbolic and neural processing.

Hybrid Systems by Translation

Definition:
Hybrid Systems by Translation involve translating symbolic logic systems into connectionist models, allowing for the integration of symbolic reasoning into neural network frameworks. This approach focuses on transforming logical rules or expressions into a form that can be processed by a neural network, thereby enabling a hybrid system that benefits from both symbolic and connectionist methodologies.

History:
The development of hybrid systems by translation emerged from the need to create models that could perform complex reasoning tasks while still benefiting from the learning and generalization abilities of neural networks. Throughout the 1990s and early 2000s, researchers worked on various methods to encode symbolic knowledge into neural networks, resulting in several hybrid approaches that bridged the gap between symbolic AI and connectionism.

Examples:

  1. Knowledge-Based Artificial Neural Networks (KBANNs): These systems start with a symbolic knowledge base (such as a set of logical rules) and translate this into a neural network structure. The network can then be trained with data to refine the initial knowledge base, combining symbolic reasoning with data-driven learning.

  2. Logic Tensor Networks (LTNs): LTNs integrate first-order logic with deep learning by translating logical formulas into differentiable constraints that can be used to train neural networks. This allows for the simultaneous processing of symbolic rules and raw data.

Conclusion

Both Connectionist Logic Systems and Hybrid Systems by Translation represent approaches to neural-symbolic integration, aiming to combine the best of both connectionist and symbolic paradigms. CLS focuses on embedding logic directly within neural network architectures, while Hybrid Systems by Translation involve converting symbolic logic into a form that neural networks can process, creating models that are both powerful and flexible.

Certainly! Let’s visualize the basic structures of Connectionist Logic Systems (CLS) and Hybrid Systems by Translation (HST).

Hybrid Systems by Translation work by converting symbolic logic into a format that can be used within a neural network. The structure involves translating logical rules into neural network configurations, enabling the network to perform symbolic reasoning tasks. Here’s a simplified diagram:

+-----------------------------------+
|                                   |
|      Symbolic Logic (Input)       |
|   (e.g., logical rules, knowledge)|
|                                   |
+------------------+----------------+|v
+-----------------------------------+
|                                   |
|  Translation Module               |
| (Translates symbolic logic        |
|  into a neural network format)    |
|                                   |
+------------------+----------------+|v
+-----------------------------------+
|                                   |
|   Neural Network (Hybrid Model)   |
|                                   |
|   +---------------------------+  |
|   | Symbolic Logic Layer       |  |
|   | (encoded into the network) |  |
|   +---------------------------+  |
|                                   |
|   +---------------------------+  |
|   | Data-Driven Layers         |  |
|   | (train on data and refine) |  |
|   +---------------------------+  |
|                                   |
+-----------------------------------+|v
+-----------------------------------+
|                                   |
|      Output (Reasoning/Decision)  |
|                                   |
+-----------------------------------+

Structure Overview:

  • Symbolic Logic (Input): Symbolic logical rules or knowledge bases are the starting point.
  • Translation Module: This component translates the symbolic logic into a neural network-compatible format.
  • Neural Network: The hybrid model consists of a combination of layers, where symbolic logic is encoded alongside data-driven learning layers.
  • Output: The final output is a reasoning or decision that incorporates both the translated symbolic logic and the learned data.

Summary

  • CLS: Directly integrates symbolic logic into the neural network, allowing for logical inference within the connectionist framework.
  • HST: Translates symbolic logic into a form that can be processed by a neural network, combining logical reasoning with neural learning.

These structures provide a simplified view of how these systems integrate neural networks with symbolic reasoning, leveraging the strengths of both paradigms.

相关文章:

Connectionist Logic Systems and Hybrid Systems by Translation

Connectionist Logic Systems Definition: Connectionist Logic Systems (CLS) are computational models that combine elements of connectionism (neural networks) with symbolic logic. These systems aim to leverage the strengths of both paradigms—connectionism’…...

盘点数据摆渡的8种常用方式 最推荐哪一种?

跨网数据摆渡是很多企业面临的一种传输场景,因为大部分企业为了保护核心数据,都会做不同级别的网络隔离,所以数据摆渡会涉及不同网络之间的数据传输和整合。这种情况下,数据需要从一个组织或地理位置传输到另一个组织或地理位置&a…...

仿照ContentLoadingProgressBar 的特点在Android项目中自定义Loading对话框

ContentLoadingProgressBar 是 Android 中的一个控件,继承自 ProgressBar。它在 ProgressBar 的基础上添加了一些特殊功能,主要用于在加载内容时显示进度。它的一些主要特点如下: 自动隐藏和显示:ContentLoadingProgressBar 会在…...

基于数据复杂度的数据库选型

数据模型的选择对于 IT 系统的开发至关重要,它不仅决定了数据存储和处理的方式,影响系统的性能、扩展性以及维护性等。本质上来说,不同的数据模型反映了我们对业务问题的不同思考和抽象程度。 今天我们从不同数据模型对于复杂数据和关系的支…...

QT基础知识5

思维导图 client.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), socket(new QTcpSocket(this))//给客户端实例化分配空间 {ui->setupUi(this);//初始化界面ui->msgEdit-&…...

C++中vector存放内置数据类型

#include<iostream> using namespace std; #include<vector> #include<algorithm>//迭代器先理解为指针 void MyPrint(int val) {cout << val << endl; } void test01() {vector<int> v;v.push_back(1);v.push_back(2);vector<int>:…...

shell编程:安装部署前常见环境检查

脚本任务 监测主机是否联通正常 检查安装操作系统版本是否和需求一致 检查CPU是否满足规格要求 检查内存是否满足规格要求 检查数据磁盘是否满足规格要求 检查操作系统分区目录大小是否满足需求 检查集群主机时间是否一致 0.配置文件准备及脚本变量初始化 编写config.i…...

思特科技:国家宝藏数字体验馆展现东方美学 让“文物活起来”

01      思特科技为“国家宝藏数字体验展”提供“数字技术”支持&#xff0c;带来国宝的数字化演绎。以《国家宝藏》顶级IP为基础&#xff0c;打造的全新沉浸文化项目“国宝数字体验展“&#xff0c;借由文物的视角、站在历史的星河中&#xff0c;探寻时间长河中不变的智慧…...

ES6笔记总结(Xmind格式):第二天

Xmind鸟瞰图&#xff1a; 简单文字总结&#xff1a; ES6知识总结 Proxy&#xff08;代理&#xff09;&#xff1a; 1.作用&#xff1a;实现数据的私有化处理 2.target 目标对象 handler处理函数 3.处理函数中有两个方法&#xff1a;get,set 4.读取数据会触发g…...

Kotlin 流flow、ShareFlow、StateFlow、Channel的解释与使用

一、介绍 随着Android接入kotlin开发&#xff0c;Android之前好多模式也渐渐被kotlin替代。开发模式也在做渐进的转型&#xff0c;从MVC到MVP在到MVVP以及现在的MVI等。 流IO在java中和kotlin中使用率都是比较高的&#xff0c;场景很多。如Java的IO和NIO&#xff0c;再到我们现…...

【个人学习】JVM(7):方法区概述、方法区内部结构、垃圾回收等

方法区 栈、堆、方法区的交互关系 从线程共享与否的角度来看 ThreadLocal:如何保证多个线程在并发环境下的安全性?典型场景就是数据库连接管理,以及会话管理。 栈、堆、方法区的交互关系 下面涉及了对象的访问定位 Person 类的 .class 信息存放在方法区中person 变量存放…...

@Scheduled 定时任务自定义

简介 Scheduled 定时任务自定义可以通过SchedulingConfigurer实现。 SchedulingConfigurer 是 Spring Framework 中的一个接口&#xff0c;用于配置定时任务。当你需要对定时任务进行更高级别的定制时&#xff0c;这个接口就显得非常有用。 可以通过SchedulingConfigurer 接口…...

一种新颖的面试方式

你好&#xff0c;我是 shengjk1&#xff0c;多年大厂经验&#xff0c;努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注&#xff01;你会有如下收益&#xff1a; 了解大厂经验拥有和大厂相匹配的技术等 希望看什么&#xff0c;评论或者私信告诉我&#xff01; 文章目录 一…...

【Linux】生产消费模型实践 --- 基于信号量的环形队列

你送出去的每颗糖都去了该去的地方&#xff0c; 其实地球是圆的&#xff0c; 你做的好事终会回到你身上。 --- 何炅 --- 基于信号量的环形队列 1 信号量2 框架构建3 代码实现4 测试运行 1 信号量 信号量本质是一个计数器&#xff0c;可以在初始化时对设置资源数量&#xf…...

Science Robotics 与蜜蜂群互动的蜂窝型机器人系统

蜜蜂&#xff0c;如黄蜂&#xff0c;蚂蚁和其他社会昆虫&#xff0c;建立大型自组织群体&#xff0c;通常被解释为自我调节的“超有机体”。这些超生物是生态系统的重要稳定剂&#xff0c;因此被认为是“关键物种”。例如&#xff0c;蜜蜂群落通过觅食授粉服务的生态效应对陆地…...

Vue 计算属性:优雅地处理数据逻辑

在 Vue.js 中&#xff0c;计算属性&#xff08;Computed Properties&#xff09;是一种非常实用的功能&#xff0c;它允许我们根据组件的响应式依赖进行缓存和派生状态。计算属性可以让我们以声明式的方式编写复杂的逻辑&#xff0c;而不必担心性能问题。 什么是计算属性&…...

C++中`union`

文章目录 C中的union什么是union&#xff1f;定义union示例一输出结果&#xff1a; 示例二修正后的代码解释输出结果结论 union的特性匿名union示例 union和struct的区别1. 内存布局2. 同时访问3. 用途 union和class的区别1. 数据成员2. 功能性3. 适用场景 在C编程中&#xff0…...

Linux——网络(1)

一、IPC&#xff08;进程间通信方式&#xff09; IPC&#xff1a;Inter Process Communication 共享内存&#xff08;最高效的进程间通信方式&#xff09; 虚拟地址 mmu(memory management unit ) 共享内存: 1.是一块&#xff0c;内核预留的空间 2.最高效的…...

【五】阿伟开始学Kafka

阿伟开始学Kafka 概述 人生若只如初见&#xff0c;阿伟心里回想起了第一次和Kafka见面的场景&#xff0c;记忆虽然已经有些模糊&#xff0c;但是感觉初次见面是美好的。积累了一些实战经验之后&#xff0c;阿伟感觉不能再是面对百度开发了&#xff0c;于是决心系统的学习一下Ka…...

Java—Arrays api

public static String toString(数组) //把数组拼接成一个字符串 public static int binarySearch(数组&#xff0c;查找的元素) //二分查找法查找元素 public static int[] copyOf(原数组,新数组长度) //拷贝数组 public st…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...