Connectionist Logic Systems and Hybrid Systems by Translation
Connectionist Logic Systems
Definition:
Connectionist Logic Systems (CLS) are computational models that combine elements of connectionism (neural networks) with symbolic logic. These systems aim to leverage the strengths of both paradigms—connectionism’s ability to process information in a distributed, parallel manner and symbolic logic’s capacity for clear, rule-based reasoning. Essentially, CLS integrates neural networks’ learning and pattern recognition capabilities with the structured reasoning of logical systems.
History:
The concept of combining neural networks with logic has been explored since the 1980s, coinciding with the resurgence of neural network research. Early work in this area attempted to address the limitations of pure neural networks, such as their lack of transparency and difficulties in performing symbolic reasoning tasks. Researchers began developing models that could perform logical inference using the distributed representations characteristic of neural networks.
Examples:
-
Neural-Symbolic Integration Models: These models represent logical formulas within a neural network, enabling the network to learn and reason about logical structures. For instance, the Neural-Symbolic Learning and Reasoning (NSLR) framework combines neural learning with logical deduction.
-
Hopfield Networks: While not a direct example of CLS, Hopfield networks have been used in connectionist logic systems to perform associative memory tasks that resemble logical operations.
In Connectionist Logic Systems, the basic structure integrates neural networks with symbolic logic. The neural network learns to represent and process logical formulas and can perform logical inference. Here’s a simplified diagram:
+-----------------------------------+
| |
| Logical Representation |
| (e.g., logical formulas, rules) |
| |
+------------------+----------------+|v
+-----------------------------------+
| |
| Neural Network (Connectionist) |
| |
| +---------------------------+ |
| | Logical Inference Layer | |
| | (encodes logical rules) | |
| +---------------------------+ |
| |
| +---------------------------+ |
| | Learning and Reasoning | |
| | (trains on data) | |
| +---------------------------+ |
| |
+-----------------------------------+|v
+-----------------------------------+
| |
| Output (Logical Reasoning) |
| |
+-----------------------------------+
Structure Overview:
- Logical Representation: Symbolic logical formulas or rules are represented in a way that can be processed by a neural network.
- Neural Network: The network consists of layers where one or more layers are specifically designed to encode and perform logical inference.
- Output: The system outputs reasoning results, which could be logical deductions or decisions made by integrating both symbolic and neural processing.
Hybrid Systems by Translation
Definition:
Hybrid Systems by Translation involve translating symbolic logic systems into connectionist models, allowing for the integration of symbolic reasoning into neural network frameworks. This approach focuses on transforming logical rules or expressions into a form that can be processed by a neural network, thereby enabling a hybrid system that benefits from both symbolic and connectionist methodologies.
History:
The development of hybrid systems by translation emerged from the need to create models that could perform complex reasoning tasks while still benefiting from the learning and generalization abilities of neural networks. Throughout the 1990s and early 2000s, researchers worked on various methods to encode symbolic knowledge into neural networks, resulting in several hybrid approaches that bridged the gap between symbolic AI and connectionism.
Examples:
-
Knowledge-Based Artificial Neural Networks (KBANNs): These systems start with a symbolic knowledge base (such as a set of logical rules) and translate this into a neural network structure. The network can then be trained with data to refine the initial knowledge base, combining symbolic reasoning with data-driven learning.
-
Logic Tensor Networks (LTNs): LTNs integrate first-order logic with deep learning by translating logical formulas into differentiable constraints that can be used to train neural networks. This allows for the simultaneous processing of symbolic rules and raw data.
Conclusion
Both Connectionist Logic Systems and Hybrid Systems by Translation represent approaches to neural-symbolic integration, aiming to combine the best of both connectionist and symbolic paradigms. CLS focuses on embedding logic directly within neural network architectures, while Hybrid Systems by Translation involve converting symbolic logic into a form that neural networks can process, creating models that are both powerful and flexible.
Certainly! Let’s visualize the basic structures of Connectionist Logic Systems (CLS) and Hybrid Systems by Translation (HST).
Hybrid Systems by Translation work by converting symbolic logic into a format that can be used within a neural network. The structure involves translating logical rules into neural network configurations, enabling the network to perform symbolic reasoning tasks. Here’s a simplified diagram:
+-----------------------------------+
| |
| Symbolic Logic (Input) |
| (e.g., logical rules, knowledge)|
| |
+------------------+----------------+|v
+-----------------------------------+
| |
| Translation Module |
| (Translates symbolic logic |
| into a neural network format) |
| |
+------------------+----------------+|v
+-----------------------------------+
| |
| Neural Network (Hybrid Model) |
| |
| +---------------------------+ |
| | Symbolic Logic Layer | |
| | (encoded into the network) | |
| +---------------------------+ |
| |
| +---------------------------+ |
| | Data-Driven Layers | |
| | (train on data and refine) | |
| +---------------------------+ |
| |
+-----------------------------------+|v
+-----------------------------------+
| |
| Output (Reasoning/Decision) |
| |
+-----------------------------------+
Structure Overview:
- Symbolic Logic (Input): Symbolic logical rules or knowledge bases are the starting point.
- Translation Module: This component translates the symbolic logic into a neural network-compatible format.
- Neural Network: The hybrid model consists of a combination of layers, where symbolic logic is encoded alongside data-driven learning layers.
- Output: The final output is a reasoning or decision that incorporates both the translated symbolic logic and the learned data.
Summary
- CLS: Directly integrates symbolic logic into the neural network, allowing for logical inference within the connectionist framework.
- HST: Translates symbolic logic into a form that can be processed by a neural network, combining logical reasoning with neural learning.
These structures provide a simplified view of how these systems integrate neural networks with symbolic reasoning, leveraging the strengths of both paradigms.
相关文章:
Connectionist Logic Systems and Hybrid Systems by Translation
Connectionist Logic Systems Definition: Connectionist Logic Systems (CLS) are computational models that combine elements of connectionism (neural networks) with symbolic logic. These systems aim to leverage the strengths of both paradigms—connectionism’…...
盘点数据摆渡的8种常用方式 最推荐哪一种?
跨网数据摆渡是很多企业面临的一种传输场景,因为大部分企业为了保护核心数据,都会做不同级别的网络隔离,所以数据摆渡会涉及不同网络之间的数据传输和整合。这种情况下,数据需要从一个组织或地理位置传输到另一个组织或地理位置&a…...
仿照ContentLoadingProgressBar 的特点在Android项目中自定义Loading对话框
ContentLoadingProgressBar 是 Android 中的一个控件,继承自 ProgressBar。它在 ProgressBar 的基础上添加了一些特殊功能,主要用于在加载内容时显示进度。它的一些主要特点如下: 自动隐藏和显示:ContentLoadingProgressBar 会在…...
基于数据复杂度的数据库选型
数据模型的选择对于 IT 系统的开发至关重要,它不仅决定了数据存储和处理的方式,影响系统的性能、扩展性以及维护性等。本质上来说,不同的数据模型反映了我们对业务问题的不同思考和抽象程度。 今天我们从不同数据模型对于复杂数据和关系的支…...
QT基础知识5
思维导图 client.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), socket(new QTcpSocket(this))//给客户端实例化分配空间 {ui->setupUi(this);//初始化界面ui->msgEdit-&…...
C++中vector存放内置数据类型
#include<iostream> using namespace std; #include<vector> #include<algorithm>//迭代器先理解为指针 void MyPrint(int val) {cout << val << endl; } void test01() {vector<int> v;v.push_back(1);v.push_back(2);vector<int>:…...
shell编程:安装部署前常见环境检查
脚本任务 监测主机是否联通正常 检查安装操作系统版本是否和需求一致 检查CPU是否满足规格要求 检查内存是否满足规格要求 检查数据磁盘是否满足规格要求 检查操作系统分区目录大小是否满足需求 检查集群主机时间是否一致 0.配置文件准备及脚本变量初始化 编写config.i…...
思特科技:国家宝藏数字体验馆展现东方美学 让“文物活起来”
01 思特科技为“国家宝藏数字体验展”提供“数字技术”支持,带来国宝的数字化演绎。以《国家宝藏》顶级IP为基础,打造的全新沉浸文化项目“国宝数字体验展“,借由文物的视角、站在历史的星河中,探寻时间长河中不变的智慧…...
ES6笔记总结(Xmind格式):第二天
Xmind鸟瞰图: 简单文字总结: ES6知识总结 Proxy(代理): 1.作用:实现数据的私有化处理 2.target 目标对象 handler处理函数 3.处理函数中有两个方法:get,set 4.读取数据会触发g…...
Kotlin 流flow、ShareFlow、StateFlow、Channel的解释与使用
一、介绍 随着Android接入kotlin开发,Android之前好多模式也渐渐被kotlin替代。开发模式也在做渐进的转型,从MVC到MVP在到MVVP以及现在的MVI等。 流IO在java中和kotlin中使用率都是比较高的,场景很多。如Java的IO和NIO,再到我们现…...
【个人学习】JVM(7):方法区概述、方法区内部结构、垃圾回收等
方法区 栈、堆、方法区的交互关系 从线程共享与否的角度来看 ThreadLocal:如何保证多个线程在并发环境下的安全性?典型场景就是数据库连接管理,以及会话管理。 栈、堆、方法区的交互关系 下面涉及了对象的访问定位 Person 类的 .class 信息存放在方法区中person 变量存放…...
@Scheduled 定时任务自定义
简介 Scheduled 定时任务自定义可以通过SchedulingConfigurer实现。 SchedulingConfigurer 是 Spring Framework 中的一个接口,用于配置定时任务。当你需要对定时任务进行更高级别的定制时,这个接口就显得非常有用。 可以通过SchedulingConfigurer 接口…...
一种新颖的面试方式
你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益: 了解大厂经验拥有和大厂相匹配的技术等 希望看什么,评论或者私信告诉我! 文章目录 一…...
【Linux】生产消费模型实践 --- 基于信号量的环形队列
你送出去的每颗糖都去了该去的地方, 其实地球是圆的, 你做的好事终会回到你身上。 --- 何炅 --- 基于信号量的环形队列 1 信号量2 框架构建3 代码实现4 测试运行 1 信号量 信号量本质是一个计数器,可以在初始化时对设置资源数量…...
Science Robotics 与蜜蜂群互动的蜂窝型机器人系统
蜜蜂,如黄蜂,蚂蚁和其他社会昆虫,建立大型自组织群体,通常被解释为自我调节的“超有机体”。这些超生物是生态系统的重要稳定剂,因此被认为是“关键物种”。例如,蜜蜂群落通过觅食授粉服务的生态效应对陆地…...
Vue 计算属性:优雅地处理数据逻辑
在 Vue.js 中,计算属性(Computed Properties)是一种非常实用的功能,它允许我们根据组件的响应式依赖进行缓存和派生状态。计算属性可以让我们以声明式的方式编写复杂的逻辑,而不必担心性能问题。 什么是计算属性&…...
C++中`union`
文章目录 C中的union什么是union?定义union示例一输出结果: 示例二修正后的代码解释输出结果结论 union的特性匿名union示例 union和struct的区别1. 内存布局2. 同时访问3. 用途 union和class的区别1. 数据成员2. 功能性3. 适用场景 在C编程中࿰…...
Linux——网络(1)
一、IPC(进程间通信方式) IPC:Inter Process Communication 共享内存(最高效的进程间通信方式) 虚拟地址 mmu(memory management unit ) 共享内存: 1.是一块,内核预留的空间 2.最高效的…...
【五】阿伟开始学Kafka
阿伟开始学Kafka 概述 人生若只如初见,阿伟心里回想起了第一次和Kafka见面的场景,记忆虽然已经有些模糊,但是感觉初次见面是美好的。积累了一些实战经验之后,阿伟感觉不能再是面对百度开发了,于是决心系统的学习一下Ka…...
Java—Arrays api
public static String toString(数组) //把数组拼接成一个字符串 public static int binarySearch(数组,查找的元素) //二分查找法查找元素 public static int[] copyOf(原数组,新数组长度) //拷贝数组 public st…...
Java - 基数排序算法介绍、应用场景和示例代码
概述 基数排序(Radix Sort)是一种非比较型整数排序算法,适用于整数或固定长度的字符串排序。它的基本思想是将待排序的元素分为多个关键字进行排序,通常从最低位(最低有效位,Least Significant Digit, LSD…...
Django 后端架构开发:文件云存储,从本地存储到腾讯COS桶集成
⭐ Django 后端架构开发:文件云存储,从本地存储到腾讯COS桶集成 目录 ☁️ 文件云存储 - 项目使用云存储💻 文件云存储 - 项目中使用本地存储📝 文件云存储 - 概述和创建项目🌐 腾讯COS桶 - 概述📚 腾讯CO…...
【系统分析师】-综合知识-计算机网络与信息安全
1、要对消息明文进行加密传送,当前通常使用的加密算法是 报文认证算法:数字摘要 RSA 非对称加密,一般不用于明文 MD5 数字摘要 SHA-1 数字摘要,160位的消息摘要 HMAC 以一个密钥和一个消息为输入,生成一个消息摘要作…...
C++ | Leetcode C++题解之第363题矩形区域不超过K的最大数值和
题目: 题解: class Solution { public:int maxSumSubmatrix(vector<vector<int>> &matrix, int k) {int ans INT_MIN;int m matrix.size(), n matrix[0].size();for (int i 0; i < m; i) { // 枚举上边界vector<int> sum(…...
python动画:场景的线性变换展示
一,主函数 LinearTransformationScene 是 Manim 中用于展示线性变换的场景类。它通过在一幅背景和前景平面上展示向量和变换,帮助理解线性代数中的概念。 LinearTransformationScene(include_background_planeTrue, include_foreground_planeTrue, ba…...
HBase体系架构与环境搭建
这里写目录标题 一、常见的NoSQL数据库二、HBase的体系架构和表结构三、搭建HBasa环境1.本地模式2.伪分布模式全分布模式HA模式 一、常见的NoSQL数据库 NoSQL数据库的说明与定义 NoSQL是一种不同于关系数据库的数据库管理系统设计方式,是对非关系型数据库的统称。它…...
海思SD3403/SS928V100开发(16)Tsensor驱动开发
1. 前言 由于需要检测SD3403芯片内部实时温度,需要开发Tsensor传感器驱动和应用 查看手册发现SD3403内部有三个Tsensor传感器 可以参考之前我写的35系列平台Tsensor驱动开发记录 海思35系列平台Tsensor驱动开发(1)驱动编写_t sensor-CSDN博客 海思35系列平台Tsensor驱动…...
JVM类加载机制—JVM类加载过程
一、概述 代码编译后,就会生成JVM(Java虚拟机)能够识别的二进制字节流文件(*.class)。而JVM把Class文件中的类描述数据从文件加载到内存,并对数据进行校验、转换解析、初始化,使这些数据最终成…...
可变参数模板与包装器
抱歉:铁汁们,最近在做兼职,积累社会经验,多有拖欠,请多多包涵(抱拳) 引子:接上回我们讲了C11的几种新增,今天就来接着讲C11中比较有用的二个东西可变参数模板与包装器。…...
工业控制常用“对象“数据类型汇总(数据结构篇)
合理巧妙的数据结构会大大简化项目的编程工作量,所以任何项目前期第一步应该是设计巧妙的数据结构、封装对象属性。这样会使我们的编程快捷和高效。这篇博客作为数据类型汇总,会不间断更新。 1、普通电机轴对象 2、普通电机轴对象(详细结构变量) TYPE "udtMotorAxis&q…...
wordpress注册页制作/windows优化大师免费
博客园 :: 首页 :: :: 联系 :: :: 管理 6 Posts :: 14 Stories :: 29 Comments :: 0 Trackbacks公告 hibernate -- HQL语句总结1. 查询整个映射对象所有字段 //直接from查询出来的是一个映射对象,即:查询整个映射对象所有字段 String hql "fro…...
物联网网站的建设和维护/河南seo推广
详情参考 https://blog.csdn.net/SeekN/article/details/114231727 Deque是双端队列,可以从队头队尾入队出队。 Queue是单向队列 只能从对位入队,队头出队 插入删除两种操作方法的区别: 1、add和offer区别 一些队列会有大小限制,…...
大型企业网站建设/凡科建站怎么收费
万维网的核心语言、标准通用标记语言下的一个应用超文本标记语言(HTML)的第五次重大修改(这是一项推荐标准、外语原文:W3C Recommendation、见本处参考资料原文内容: 2014年10月29日,万维网联盟宣布&#x…...
网站为什么要seo?/今日头条权重查询
网站 更多书籍点击进入>> CiCi岛 下载 电子版仅供预览及学习交流使用,下载后请24小时内删除,支持正版,喜欢的请购买正版书籍 电子书下载(皮皮云盘-点击“普通下载”)购买正版 封页 编辑推荐 请关注Head First系列其他新书 ★荣获…...
柳州网站建设33/seo简介
1、Ubuntu14.04 下载,打开Ubuntu官网,找到下载页面,选择要下载版本,单击“下载”。 2、跳过上面那些乱七八糟的东西 3、单击下载“download now” …...
我想做网站 怎么做呢/优化大师免费安装下载
外接键盘时,如果没反应,可重启手机,再接就可以了。用便签应用测试 OK。五笔输入法:触宝输入法装好后,五笔 要另下载个包,还有手写也一样。插上键盘就可以输入中文了。很简单。 经过测试。noppoo 84 mini 双…...