Python 全栈系列264 使用kafka进行并发处理
说明
暂时考虑的场景是单条数据处理特别复杂和耗时的场景。
场景如下:
要对一篇文档进行实体处理,然后再对实体进行匹配。在这个过程当中,涉及到了好几部分服务:
- 1 实体识别服务
- 2 数据库查询服务
- 3 es查询服务
整个处理包成了服务,在单线程处理增量的时候非常正常,但尝试进行并行调用的时候出现了问题。每次报错的时候都是显示Connection Reset By Peer
,感觉像是服务端连接的问题。由于每一部分都可能是瓶颈,我没(时间)法准确定位问题所在,很有可能是同时起了5个实体识别,GPU的抢占导致的问题(负载经常在100%)。
所以,这个事有两个启示:
- 1 对于One处理的设计,是否可以保存中间关键步骤的跟踪?
- 2 系统资源瓶颈。服务资源是瓶颈(GPU、网络、数据库IO),如果目标是瓶颈资源(Server模式),很容易出现失败。反过来,如果从瓶颈资源出发,尽力而为(Worker)反而会有更高的资源利用率。但是,Server模式是面向消费者的,而Worker模式则是面向生产者的,如果我们要把工作交出去,还是应该采用Server模式。
所以要解决的问题是:在保证逻辑正确的情况下,且有大量miss的情况下,如何尽快的完成业务上的任务。
内容
在数据处理架构中,可靠性与效率也是一对钳制指标,这类型指标混在一起是不行的,必须要分开。所以在机器学习里有:
- 1 精确率与召回率。是分开来研究的,当然也有最终融合的指标(F1Score)
- 2 TCP/IP。
TCP/IP 协议栈中的两个核心协议是:
TCP(传输控制协议):提供可靠的、面向连接的通信服务,确保数据包按顺序到达且无错误。
IP(互联网协议):负责将数据包从源地址传输到目的地址,但不保证传输的可靠性。
在我的业务场景下,TCP可以视为数据库+比对,而IP则视为队列+处理
。
(TCP模式)数据库的设计目的就是为了可靠、长期地保存大量的数据,我们把任务、结果以及里程碑节点(中间过程)保存在数据库中是合适的。现在假设只有两个节点:任务和结果。(虽然我发现,在有明显瓶颈的地方是实体识别,这里应该独立一个里程碑节点出来)
(IP模式)队列的设计目的则是缓冲和分发。缓冲是解决生产者的困扰,这样不需要知道机器的能力是多少,把要做的任务发完就好了。然后还可以解决“众包”问题,通过多个worker进行任务分摊,尽可能快的执行任务。在这个过程中,必然会产生大量的不确定问题,导致worker处理、交付失败的。这也是快所要付出的代价。
通过数据库 + 队列的组合,就可以做到既快又好。
1 任务数据入库
简单起见,暂时还是采用mysql。
先将原始数据灌到source表。
之前用离线方式跑了一部分数据,将这部分数据搬到 result表。
right_files = list_file_names_without_extension(right_path)
res_file_list = []
get_right_file_names = []
for the_file in list(right_files):the_tem_data = from_pickle(the_file, './right/')get_right_file_names.append(the_file)res_file_list.append(the_tem_data)res_file_list1 = flatten_list(res_file_list)
# 过滤掉失败的
res_file_list2 = [x for x in res_file_list1 if x !='detail']
right_res_df = pd.DataFrame(res_file_list2)# 引入与数据库表规范对接的数据模型
from pydantic import BaseModel,field_validator
class DocEnt(BaseModel):doc_id : strent_list : list maaped_ent: list @propertydef ent_list_str(self):return ','.join(self.ent_list)@propertydef mapped_list_str(self):return ','.join(self.maaped_ent)def dict(self):data_dict = {}data_dict['doc_id'] = self.doc_iddata_dict['ent_list_str'] = self.ent_list_strdata_dict['mapped_list_str'] = self.mapped_list_strreturn data_dictfrom typing import Listclass DocEnt_list(BaseModel):data_list: List[DocEnt]# 将结果数据转为可被数据库接受的字段模式
docent_list = DocEnt_list(data_list = right_res_df.to_dict(orient='records'))
docent_list1 = [x.dict() for x in docent_list.data_list]
将合法的数据结果与ORM对接,先引入数据模型。
from sqlalchemy import create_engine, Column, Integer, String, Float, DateTime, func, Text, Index
from sqlalchemy.orm import sessionmaker,declarative_base
from datetime import datetimem7_24013_url = f"mysql+pymysql://xxx:xxx@172.17.0.1:24013/mydb"# from urllib.parse import quote_plus
# the_passed = quote_plus('!@#*')
# # 创建数据库引擎
m7_engine = create_engine(m7_24013_url)# 创建基类
Base = declarative_base()# 定义数据模型
class DocEntMap(Base):__tablename__ = 'doc_ent_map'id = Column(Integer, primary_key=True)# CompileError: (in table 'users', column 'name'): VARCHAR requires a length on dialect mysqldoc_id = Column(String(50))ent_list_str = Column(Text)mapped_list_str = Column(Text)create_time = Column(DateTime, default=lambda: datetime.now())# 创建索引__table_args__ = (Index('idx_doc_id', doc_id),Index('idx_create_time', create_time),)Base.metadata.create_all(m7_engine)
# 创建会话
Session = sessionmaker(bind=m7_engine)
分批次存储数据
ent_map_lb = ListBatchIterator(docent_list1, 1000)
import tqdm
with Session() as session:for i,some_list in tqdm.tqdm(enumerate(ent_map_lb)):test_list = [DocEntMap(**x) for x in some_list]# 一次性添加到会话中session.add_all(test_list)# 提交会话session.commit()
因为是mysql,我按照每批1000来操作,每秒能存2批,这个速度也能接受了。
2 比较差集
方式一:mysql不支持
SELECT id FROM table1
EXCEPT DISTINCT
SELECT id FROM table2;
方式2:left join
-- 查找在 table1 中存在但在 table2 中不存在的 id
SELECT t1.id FROM table1 t1
LEFT JOIN table2 t2 ON t1.id = t2.id
WHERE t2.id IS NULL;
我使用Sqlalchmey进行比较并获取数据,稍慢,但方法简单
from sqlalchemy import create_engine, Column, Integer, String, Float, DateTime, func, Text, Index
from sqlalchemy.orm import sessionmaker,declarative_base
from datetime import datetimem7_24013_url = f"mysql+pymysql://xxx:xxx@172.17.0.1:24013/mydb"# from urllib.parse import quote_plus
# the_passed = quote_plus('!@#*')
# # 创建数据库引擎
m7_engine = create_engine(m7_24013_url)# 创建基类
Base = declarative_base()# 定义数据模型
class DocEntMap(Base):__tablename__ = 'doc_ent_map'id = Column(Integer, primary_key=True)# CompileError: (in table 'users', column 'name'): VARCHAR requires a length on dialect mysqldoc_id = Column(String(50))ent_list_str = Column(Text)mapped_list_str = Column(Text)create_time = Column(DateTime, default=lambda: datetime.now())# 创建索引__table_args__ = (Index('idx_doc_id', doc_id),Index('idx_create_time', create_time),)# 定义模型类
class SourceData(Base):__tablename__ = 'source_data'id = Column(Integer, primary_key=True)mid = Column(String(50))content = Column(Text)created = Column(String(50))def dict(self):data_dict = {}data_dict['doc_id'] = self.middata_dict['text'] = self.contentreturn data_dict# 创建表(如果表已经存在,这一步将忽略)
Base.metadata.create_all(m7_engine)# 创建会话
Session = sessionmaker(bind=m7_engine)# 分页查询
page = 1
page_size = 1000while True:offset = (page - 1) * page_sizeresult = session.query(SourceData).filter(~SourceData.mid.in_(session.query(DocEntMap.doc_id))).offset(offset).limit(page_size).all()if not result:breakif page % 10 ==0:print(page)resent_task_list = [x.dict() for x in result]produces = Producer(servers = 'KAFKASERVER',raw_msg_list = resent_task_list, topic='the_topic' )resp = req.post('http://agent:port/send_msg/',json = produces.dict()).json()page += 1
翻页到后面还是慢的,不过确实比较简单,省事。
如果使用clickhouse,选取列的速度还是非常快的。要做好索引之后再取数应该效率会比较高。后续再看吧,我现在都倾向先用lazy版的。
sql="""SELECT mid FROM sourceEXCEPTSELECT doc_id FROM target
;
"""
data=chc._exe_sql(sql)
3 kafka 消费
消费也是通过kafka agent来做的,但是比我之前在本机跑慢。我猜是因为worker在处理完任务,请求下一个时,无论多快,都要进行序列化。而且因为通过agent进行,消费者需要对数据进行两次序列化,这个还是会比较耗时的。
我的想法是,通过一个专门的数据拉取程序,事先将数据从kafka上拉下来,以short_uuid命名,然后存在本地的left。然后本地的worker从left中取数。
为什么要大费周章从kafka取,而不是直接从数据库取?
主要目的是为了更好的分发。例如此时又要加另外两台机器协同处理,难道我还要在手工分配数据吗?
纯粹取数的程序,消费速度一定比处理程序快多了,这样就避免了每次要处理时才进行序列化。
相关文章:
![](https://www.ngui.cc/images/no-images.jpg)
Python 全栈系列264 使用kafka进行并发处理
说明 暂时考虑的场景是单条数据处理特别复杂和耗时的场景。 场景如下: 要对一篇文档进行实体处理,然后再对实体进行匹配。在这个过程当中,涉及到了好几部分服务: 1 实体识别服务2 数据库查询服务3 es查询服务 整个处理包成了服…...
![](https://i-blog.csdnimg.cn/blog_migrate/44696b9fc71021ca6d125801eee82179.gif#pic_center)
【安全靶场】-DC-7
❤️博客主页: iknow181 🔥系列专栏: 网络安全、 Python、JavaSE、JavaWeb、CCNP 🎉欢迎大家点赞👍收藏⭐评论✍ 一、收集信息 1.查看主机是否存活 nmap -T4 -sP 192.168.216.149 2.主动扫描 看开放了哪些端口和功能 n…...
![](https://www.ngui.cc/images/no-images.jpg)
0065__windows开发要看的经典书籍
windows开发要看的经典书籍_window编程书籍推荐-CSDN博客...
![](https://i-blog.csdnimg.cn/direct/350638ed281a457fbd738f420958e30b.png)
第133天:内网安全-横向移动域控提权NetLogonADCSPACKDC永恒之蓝
案例一:横向移动-系统漏洞-CVE-2017-0146 这个漏洞就是大家熟悉的ms17-010,这里主要学习cs发送到msf,并且msf正向连接后续 原因是cs只能支持漏洞检测,而msf上有很多exp可以利用 注意msf不能使用4.5版本的有bug 这里还是反弹权…...
![](https://img-blog.csdnimg.cn/img_convert/95e87dfd3a0cfd980aa3dde5ebf0e5a8.gif)
【IoTDB 线上小课 06】列式写入=时序数据写入性能“利器”?
【IoTDB 视频小课】更新来啦!今天已经是第六期了~ 关于 IoTDB,关于物联网,关于时序数据库,关于开源... 一个问题重点,3-5 分钟,我们讲给你听: 列式写入到底是? 上一期我们详细了解了…...
![](https://img-blog.csdnimg.cn/direct/7f06907c3c4b4c2a8800bace1e511bb8.gif#pic_center)
【机器学习】小样本学习的实战技巧:如何在数据稀缺中取得突破
我的主页:2的n次方_ 在机器学习领域,充足的标注数据通常是构建高性能模型的基础。然而,在许多实际应用中,数据稀缺的问题普遍存在,如医疗影像分析、药物研发、少见语言处理等领域。小样本学习(Few-Shot Le…...
![](https://www.ngui.cc/images/no-images.jpg)
2024.08.14 校招 实习 内推 面经
地/球🌍 : neituijunsir 交* 流*裙 ,内推/实习/校招汇总表格 1、校招 | 理想汽车2025“理想”技术沙龙开启报名 校招 | 理想汽车2025“理想”技术沙龙开启报名 2、校招 | 紫光国芯2025校园招聘正式启动 校招 | 紫光国芯2025校园招聘正式…...
![](https://i-blog.csdnimg.cn/direct/5b2da8057a8b4f19be00b7556ccfa233.jpeg#pic_center)
国产双通道集成电机一体化应用的电机驱动芯片-SS6951A
电机驱动芯片 - SS6951A为电机一体化应用提供一种双通道集成电机驱动方案。SS6951A有两路H桥驱动,每个H桥可提供较大峰值电流4.0A,可驱动两个刷式直流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。双极步进电机可以以整…...
![](https://www.ngui.cc/images/no-images.jpg)
32 - II. 从上到下打印二叉树 II
comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9832%20-%20II.%20%E4%BB%8E%E4%B8%8A%E5%88%B0%E4%B8%8B%E6%89%93%E5%8D%B0%E4%BA%8C%E5%8F%89%E6%A0%91%20II/README.md 面试题 32 - II. 从上到下打…...
![](https://i-blog.csdnimg.cn/direct/7371ccf98c5d49d6bffca5cae2ba109c.png)
總結熱力學_3
參考: 陈曦<<热力学讲义>>http://ithatron.phys.tsinghua.edu.cn/downloads/thermodynamics.pdf 4 热力学量的测量 4.3 主温度计 常用的气体温度计有等体积气体温度计、声学气体温度计和介电常数气体温度计。很多气体在水的三相点附近都接近理想气体。但真正的理…...
![](https://i-blog.csdnimg.cn/direct/dcde885bd50645f8946c08def9fbdccf.png)
TypeScript学习笔记1---认识ts与js的异同、ts的所有数据类型详解
前言:去年做过几个vue3js的项目,当时考虑到时间问题,js更加熟悉,学习成本低一点,所以只去了解了vue3。最近这段时间补了一下ts的知识点,现今终于有空来码文章了,做个学习总结,方便以…...
![](https://i-blog.csdnimg.cn/direct/c5f44c6fbe294b9b8065eb9e08f73089.jpeg#pic_center)
华为数通方向HCIP-DataCom H12-821题库(更新单选真题:1-10)
第1题 1、下面是一台路由器的部分配置,关于该配置描述正确的是? [HUAWEllact number 2001 [HUAWEl-acl-basic-2001]rule 0 permit source 1.1.1.1 0 [HUAWEl-acl-basic-2001]rule 1 deny source 1.1.1.0 0 [HUAWEl-acl-basic-2001]rule...
![](https://i-blog.csdnimg.cn/direct/9c58cb32aedf43888035965b58cc2854.png)
【车载开发系列】单片机烧写的文件
【车载开发系列】单片机烧写的文件 【车载开发系列】单片机烧写的文件 【车载开发系列】单片机烧写的文件一. 什么是bin二. 什么是Hex三. 什么是Motorola S-record(S19)四. ELF格式五. Bin与Hex文件的比对六. 单片机烧写文件的本质 一. 什么是bin bin是…...
![](https://www.ngui.cc/images/no-images.jpg)
pyqt 用lamada关联信号 传递参数 循环
在PyQt中,使用lambda函数来关联信号并传递参数是一个常见的做法,尤其是在需要为不同的对象实例关联不同的槽函数参数时。但是,需要注意的是,直接使用lambda可能会导致一些不易察觉的错误,尤其是当它在循环中使用时。这…...
![](https://www.ngui.cc/images/no-images.jpg)
adb命令
adbclient adbserver adbd 三者之间的关系 adbclient, adbserver, 和 adbd 是 Android Debug Bridge (ADB) 组件中的三个主要组成部分。它们各自扮演着不同的角色,共同协作来实现设备调试和管理的功能。下面我将详细介绍这三个组件之间的关系: adbd (A…...
![](https://www.ngui.cc/images/no-images.jpg)
Spring Boot项目热部署
Spring Boot项目热部署是什么 Spring Boot项目热部署是一种开发时的优化技术,可以使开发人员在修改代码后不需要重新启动应用程序即可实时看到修改的效果。在传统的开发模式中,每次修改代码后都需要重新编译、打包和部署应用程序,这样会浪费大…...
![](https://csdnimg.cn/release/blog_editor_html/release2.3.6/ckeditor/plugins/CsdnLink/icons/icon-default.png?t=N7T8)
Chat App 项目之解析(八)
Chat App 项目介绍与解析(一)-CSDN博客文章浏览阅读340次,点赞7次,收藏3次。Chat App 是一个实时聊天应用程序,旨在为用户提供一个简单、直观的聊天平台。该应用程序不仅支持普通用户的注册和登录,还提供了…...
![](https://img-blog.csdnimg.cn/img_convert/41027dd726908473019032f325fc5c1f.png)
CAAC无人机飞行执照:学习内容与考试流程详解
CAAC无人机飞行执照的学习内容与考试流程是无人机爱好者及从业者必须了解的重要信息。以下是对这两方面的详细解析: 学习内容 CAAC无人机飞行执照的学习内容涵盖了多个方面,以确保学员能够全面掌握无人机飞行和应用的技能。主要学习内容包括:…...
![](https://csdnimg.cn/release/blog_editor_html/release2.3.6/ckeditor/plugins/CsdnLink/icons/icon-default.png?t=N7T8)
苹果手机怎么连接蓝牙耳机?3个方案,3秒连接
在快节奏的现代生活中,无线蓝牙耳机因其便捷性和自由度成为了许多人的首选。那么,苹果手机怎么连接蓝牙耳机呢?本文将为您介绍3种快速连接苹果设备与蓝牙耳机的方案,让您在享受音乐、通话或观看视频时,不再受线缆束缚&…...
![](https://i-blog.csdnimg.cn/direct/3a6521fbe0704dca80a4e9408174b278.png)
CAD图纸加密软件有哪些?10款超级好用的CAD图纸加密软件推荐
在数字化设计日益普及的今天,CAD图纸作为企业的核心资产,其安全性变得尤为重要。为了防止图纸被非法获取、篡改或泄露,使用专业的CAD图纸加密软件成为了许多企业和设计师的首选。本文将为您推荐10款在2024年表现突出的CAD图纸加密软件&#x…...
![](https://i-blog.csdnimg.cn/direct/44876f26e83944c0bf93e578c79b4da5.gif#pic_center)
【html+css 绚丽Loading】000011 三元轮回珠
前言:哈喽,大家好,今天给大家分享htmlcss 绚丽Loading!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕…...
![](https://i-blog.csdnimg.cn/direct/25e6bdeda606464b9bea86c4805fc1e1.jpeg)
算法学习018 求最短路径 c++算法学习 中小学算法思维学习 比赛算法题解 信奥算法解析
目录 C求最短路径 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、运行结果 五、考点分析 六、推荐资料 C求最短路径 一、题目要求 1、编程实现 给定n个顶点,每个顶点到其它顶点之间有若干条路,选择每条路需要消耗一定…...
![](https://i-blog.csdnimg.cn/direct/0a5d741a79254f9a9afb29c939c734c9.png)
vue-element-admin——<keep-alive>不符合预期缓存的原因
vue-element-admin——<keep-alive>不符合预期缓存的原因 本文章,以现在中后台开发用的非常多的开源项目vue-element-admin为案例。首先,列出官方文档与缓存<keep-alive>相关的链接(请认真阅读,出现缓存<keep-ali…...
![](https://i-blog.csdnimg.cn/direct/503a6235e74545f2a1642f51cbfeecd3.jpeg)
基于ElementPlus的分页表格组件ReTable
分页表格ReTable 组件实现基于 Vue3 Element Plus Typescript,同时引用 vueUse lodash-es tailwindCss (不影响功能,可忽略) 基于ElTable和ElPagination组件封装的分页表格,支持本地分页以及远程请求两种方式。本地数据分页自带全量数据的…...
![](https://www.ngui.cc/images/no-images.jpg)
力扣题/图论/课程表
课程表 力扣原题 你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课…...
![](https://i-blog.csdnimg.cn/direct/7b4ce5e5531c40c692fd8cb5a816f0aa.png)
SQL进阶技巧:基于指定规则的缺失值填充问题
目录 0 场景描述 1 数据准备 2 问题分析 3 小结 0 场景描述 有如下breed表。表中有breed、dt、value字段,value值中存在大量的NULL值,NULL值为缺省值,缺省值需要按照一定规则进行填充。 规则如下: 用表中value值紧邻且非空的两行均值进行填充。 1 数据准备 with bre…...
![](https://img-blog.csdnimg.cn/img_convert/f557d900626a79380ed56d539caef901.jpeg)
【气象百科】光伏自动气象站的功能优势
随着全球对可再生能源需求的日益增长,光伏发电作为清洁、可再生的能源形式,正逐步成为推动能源转型的重要力量。而光伏自动气象站,作为光伏电站智能化管理的重要组成部分,其独特的功能优势在提升光伏系统效率、优化运维策略、增强…...
![](https://i-blog.csdnimg.cn/direct/521a279065954031a102c2cd69b37a06.png)
嵌入式AI快速入门课程-K510篇 (第二篇 Ubuntu的基础操作)
第二篇 Ubuntu的基础操作 文章目录 第二篇 Ubuntu的基础操作1. 安装 VMware 运行 Ubuntu1.1 安装 VMware 1.2 使用VMware打开Ubuntu1.2.1 下载、解压Ubuntu映像文件1.2.1 在BIOS上启动虚拟化(virtualization)1.1.1 使用VMware运行Ubuntu 2.第1章 Ubuntu操作入门1.1 Ubuntu下打开…...
![](https://i-blog.csdnimg.cn/direct/c56a8b2f4925499785384b13f4f04371.png)
android13隐藏调节声音进度条下面的设置按钮
总纲 android13 rom 开发总纲说明 目录 1.前言 2.情况分析 3.代码修改 4.编译运行 5.彩蛋 1.前言 将下面的声音调节底下的三个点的设置按钮,隐藏掉。 效果如下 2.情况分析 查看布局文件 通过布局我们可以知道这个按钮就是 com.android.keyguard.AlphaOptimizedImageB…...
![](https://www.ngui.cc/images/no-images.jpg)
Java ArrayList和LinkedList
ArrayList ArrayList是Java中最常用的数据结构之一,它是一个动态数组的实现,允许你在程序中存储和管理一个可变大小的对象列表,我们可以添加或删除元素。 ArrayList 继承了 AbstractList ,并实现了 List 接口。 基本概念 Arra…...
![](/images/no-images.jpg)
wordpress摘要添加省略号/宁波seo排名费用
Java NIO Path基本概念Path的创建创建绝对路径Path创建相对路径PathPath类的方法normalize基本概念 Path接口在java.nio.file包下在Java中 ,Path表示文件系统的路径,可以指向文件或者文件夹,有绝对路径和相对路径之分java.nio.file.Path接口和操作系统的path环境变量没有任何关…...
![](https://img-blog.csdnimg.cn/img_convert/4e36b8ff18c3aa59af0d98d1fc391a1b.png)
wordpress仿站维护/网站优化外包费用
NEW关注Tech逆向思维视频号最新视频→【都2021年了,为什么还有人裸聊被骗?】出品|刺猬公社文 | 晓含编辑 | 石灿国货出圈:将直播间作为新传播渠道,以国风产品留住人心。“蜂花会是下一个鸿星尔克吗”?11月1…...
![](/images/no-images.jpg)
谁帮助汉字叔叔做网站/百度用户服务中心电话
使用createrepo创建自己的yum源相比使用shell脚本,从源码编译安装的方式,脚本的可维护性比起rpm要糟糕一些,而且从长远来看,rpm、yum源的可维护性,要比“脚本”可靠一些。在本文中,花开分享了创建yum源的操…...
![](https://yqfile.alicdn.com/3c8e82a56a2bed52fa7a6f22dac2de797aabfae9.png)
在哪里建网站免费/steam交易链接怎么改
行链接和行迁移1)什么是行链接和行迁移①行链接:指一行存储在多个块中的情况,即行链接是跨越多块的行。②行迁移:指一个数据行由于update语句导致当前块被重新定位到另一个块(那里有充足的空间)中ÿ…...
![](/images/no-images.jpg)
菜单栏颜色wordpress/免费crm系统手机版
单值平均值预压次试件编号荷载千分表左右左右左右左右左右左右读数(mm)平均值(mm)△LP2-P1(mm)荷载千分表左右左右左右左右左右左右读数(mm)平均值(mm)△LP2-P1(mm)荷载千分表左右左右左右左右左右左右读数(mm)平均值(mm)△LP2-P1(mm)试验环境仪器编号3P1P2P1P2P22P1P2P1P2P1P1…...
![](/images/no-images.jpg)
上海市建设安全协会网站特种工/b站推广网站入口mmm
zipinfo在不解压的情况下,获取zip压缩文件的的详细信息。zipinfo列出了ZIP档案中有关文件的技术信息,最常见的是在MS-DOS系统上。这些信息包括文件访问权限、加密状态、压缩类型、版本和操作系统或压缩程序的文件系统等。默认的行为(没有选项)是列出存档…...