qwen2 VL 多模态图文模型;图像、视频使用案例
参考:
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
模型:
export HF_ENDPOINT=https://hf-mirror.comhuggingface-cli download --resume-download --local-dir-use-symlinks False Qwen/Qwen2-VL-2B-Instruct --local-dir qwen2-vl
安装:
transformers-4.45.0.dev0
accelerate-0.34.2 safetensors-0.4.5
pip install git+https://github.com/huggingface/transformers
pip install 'accelerate>=0.26.0'
代码:
单张图片
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained("/ai/qwen2-vl", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("/ai/qwen2-vl")# Image
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
image = Image.open(requests.get(url, stream=True).raw)conversation = [{"role": "user","content": [{"type": "image",},{"type": "text", "text": "Describe this image."},],}
]# Preprocess the inputs
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids) :]for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)
这是图片:




中文问
# Image
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
image = Image.open(requests.get(url, stream=True).raw)conversation = [{"role": "user","content": [{"type": "image",},{"type": "text", "text": "描述下这张图片."},],}
]# Preprocess the inputs
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids) :]for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)

多张图片
def load_images(image_info):images = []for info in image_info:if "image" in info:if info["image"].startswith("http"):image = Image.open(requests.get(info["image"], stream=True).raw)else:image = Image.open(info["image"])images.append(image)return images# Messages containing multiple images and a text query
messages = [{"role": "user","content": [{"type": "image", "image": "/ai/fight.png"},{"type": "image", "image": "/ai/long.png"},{"type": "text", "text": "描述下这两张图片"},],}
]# Load images
image_info = messages[0]["content"][:2] # Extract image info from the message
images = load_images(image_info)# Preprocess the inputs
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)inputs = processor(text=[text_prompt], images=images, padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids) :]for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)



视频
安装
pip install qwen-vl-utils
from qwen_vl_utils import process_vision_info# Messages containing a images list as a video and a text query
messages = [{"role": "user","content": [{"type": "video","video": ["file:///path/to/frame1.jpg","file:///path/to/frame2.jpg","file:///path/to/frame3.jpg","file:///path/to/frame4.jpg",],"fps": 1.0,},{"type": "text", "text": "Describe this video."},],}
]
# Messages containing a video and a text query
messages = [{"role": "user","content": [{"type": "video","video": "/ai/血液从上肢流入上腔静脉.mp4","max_pixels": 360 * 420,"fps": 1.0,},{"type": "text", "text": "描述下这个视频"},],}
]# Preparation for inference
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text],images=image_inputs,videos=video_inputs,padding=True,return_tensors="pt",
)
inputs = inputs.to("cuda")# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)


相关文章:
qwen2 VL 多模态图文模型;图像、视频使用案例
参考: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct 模型: export HF_ENDPOINThttps://hf-mirror.comhuggingface-cli download --resume-download --local-dir-use-symlinks False Qwen/Qwen2-VL-2B-Instruct --local-dir qwen2-vl安装&#x…...
ASPICE评估:汽车软件质量的守护神
随着汽车行业的快速发展,车载软件系统的复杂性和重要性日益凸显。为了确保汽车软件的质量和安全性, 汽车行业引入了ASPICE(Automotive SPICE)评估作为评价软件开发团队研发能力的重要工具。 本文将详细介绍ASPICE评估的概念、过…...
野生动物检测系统源码分享
野生动物检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…...
【Hot100】LeetCode—75. 颜色分类
目录 1- 思路题目识别技巧 2- 实现⭐75. 颜色分类——题解思路 3- ACM 实现 原题链接:75. 颜色分类 1- 思路 题目识别 识别1 :给定三种类型数据,使得三种数据用一次遍历实现三种数据排序。 技巧 用两条线将数组分为三部分A 线左侧&#x…...
【物联网技术大作业】设计一个智能家居的应用场景
前言: 本人的物联网技术的期末大作业,希望对你有帮助。 目录 大作业设计题 (1)智能家居的概述。 (2)介绍智能家居应用。要求至少5个方面的应用,包括每个应用所采用的设备,性能&am…...
ESP8266做httpServer提示Header fields are too long for server to interpret
CONFIG_HTTP_BUF_SIZE512 CONFIG_HTTPD_MAX_REQ_HDR_LEN1024 CONFIG_HTTPD_MAX_URI_LEN512CONFIG_HTTPD_MAX_REQ_HDR_LEN由512改为1024...
jmeter设置全局token
1、创建setup线程,获取token的接口在所有线程中优先执行,确保后续线程可以拿到token 2、添加配置原件-Http信息头管理器,添加取样器-http请求 配置好接口路径,端口,前端传参数据,调试一下,保证获…...
DORIS - DORIS之索引简介
索引概述 索引对比 索引建议 (1)最频繁使用的过滤条件指定为 Key字段,自动建前缀索引,它的过滤效果最好,但是一个表只能有一个前缀索引,因此要用在最频繁的过滤条件上,前缀索引比较小ÿ…...
Java 串口通信—收发,监听数据(代码实现)
一、串口通信与串行通信的原理 串行通信是指仅用一根接收线和一根发送线,将数据以位进行依次传输的一种通讯方式,每一位数据占据一个固定的时间长度。 串口通信(Serial Communications)的概念非常简单,串口按位&#x…...
fileinput pdf编辑初始化预览
var $fileLinkInput $(#file_link_full); $fileLinkInput.fileinput({language: zh,uploadUrl: <?php echo Yii::$app->urlManager->createUrl([file/image, type > work_file]);?>,initialPreview: [defaultFile],initialPreviewAsData: true,initialPrevie…...
微信支付开发-需求整理及需求设计
一、客户要求 1、通过唤醒机器人参与答题项,机器人自动获取题目,用户进行答题; 2、用户答对题数与后台设置的一样或者更多,则提醒用户可以领取奖品,但是需要用户支付邮费; 3、用户在几天之内不能重复领取奖…...
vs code: pnpm : 无法加载文件 C:\Program Files\nodejs\pnpm.ps1,因为在此系统上禁止运行脚本
在visual studio code运行pnpm出错: pnpm : 无法加载文件 C:\Program Files\nodejs\pnpm.ps1,因为在此系统上禁止运行脚本 解决方案: 到C:\Program Files\nodejs文件夹下删除pnpm.ps1即可。 C:\Program Files\nodejs改成你自己的路径...
web测试必备技能:浏览器兼容性测试
如今,市面上的浏览器种类越来越多(尤其是在平板和移动设备上),这就意味着你所测试的站点需要在这些你声称支持浏览器上都能很好的工作。 同时,主流浏览器(IE,Firefox,Chrome&#x…...
《数据资产管理核心技术与应用》首次大型赠书活动圆满结束
《数据资产管理核心技术与应用》是清华大学出版社出版的一本图书,作者为张永清等著,在2024.9.11号晚上20:00,本书作者张永清联合锋哥聊数仓公众号和清华大学出版社一起,向各大大数据技术爱好者通过三轮互动活动赠送了3本正版图书。…...
vue在一个组件引用其他组件
在vue一个组件中引用另一个组件的步骤 必须在script中导入要引用的组件需要在export default的components引用导入的组件(这一步经常忘记)在template使用导入的组件<script><!-- 第一步,导入--> import Vue01 from "@/components/Vue01.vue";...
软件测试学习笔记丨Postman实战练习
本文转自测试人社区,原文链接:https://ceshiren.com/t/topic/32096#h-22 二、实战练习 2.1 宠物商店接口文档分析 接口文档:http://petstore.swagger.io ,这是宠物商店接口的 swagger 文档。 2.1.1 什么是 swagger Swagger 是…...
kubernetes微服务基础及类型
目录 1 什么是微服务 2 微服务的类型 3 ipvs模式 ipvs模式配置方式 4 微服务类型详解 4.1 ClusterIP 4.2 ClusterIP中的特殊模式headless 4.3 nodeport 4.4 metalLB配合loadbalance实现发布IP 1 什么是微服务 用控制器来完成集群的工作负载,那么应用如何暴漏出去&…...
linux-L3_linux 查看进程(node-red)
linux 查看进程 以查看进程node-red为例 ps aux | grep node-red...
区块链之变:揭秘Web3对互联网的改变
传统游戏中,玩家的虚拟资产(如角色、装备)通常由游戏公司控制,玩家无法真正拥有这些资产或进行交易。而在区块链游戏中,虚拟资产通过去中心化技术记录在区块链上,玩家对其拥有完全的所有权,并能…...
SAP B1 Web Client MS Teams App集成连载一:先决条件/Prerequisites
一、先决条件/Prerequisites 在设置 SAP Business One 应用之前,确保您已具备以下各项:Before you set up the SAP Business One app, make sure you have acquired the following: 1.Microsoft Teams 管理员账户/A Microsoft Teams admin account 您需…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
