【pytorch】pytorch入门4:神经网络的卷积层
文章目录
- 前言
- 一、定义概念 + 缩写
- 二、性质
- 三、代码
- 总结
- 参考文献
前言
使用 B站小土堆课程的笔记
一、定义概念 + 缩写
- 卷积层是神经网络中用于突出特征来进行分类任务的层。
二、性质
- 卷积核例子:vgg16 model

三、代码
- 添加库
python代码块import os
import torch
import torchvision # torchvision 通常用于计算机视觉任务
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
- 下载/加载数据集,加载数据
# 这是一个类,用于下载和加载 CIFAR-10 数据集。CIFAR-10 是一个常用的小型图像数据集,用于训练机器学习和计算机视觉算法。它包含10个类别,每个类别有6000张32x32的彩色图像,总共有60000张图像。
# transform=torchvision.transforms.ToTensor() 转换格式
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),download=True)# load data
dataloader = DataLoader(dataset, batch_size=64)
- 定义类,搭建简单神经网络
# 搭建简单 NN
class Tudui(nn.Module):def __init__(self):# 继承super(Tudui, self).__init__()# initself.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)# 卷积层def forward(self, x):x = self.conv1(x) # convreturn x# create an example
tudui = Tudui()
- 加载到 tensorboard
# log writer, write to tensorboard
writer = SummaryWriter("../logs")
- 进行卷积
# init counter
step = 0# 循环进行卷积操作
for data in dataloader:imgs, targets = dataoutput = tudui(imgs) # def a outputprint(imgs.shape)print(output.shape)# torch.Size([64, 3, 32, 32])# add img to tensorboardwriter.add_images("input", imgs, step)# torch.Size([64, 6, 30, 30]) -> [xxx, 3, 30, 30]output = torch.reshape(output, (-1, 3, 30, 30))writer.add_images("output", output, step)# counterstep = step + 1
- 直接在 py 中加载 tensorboard,端口=6006;关闭 writer
# open tensorboard
os.system('tensorboard --logdir=logs --port=6006')
# tensorboard --logdir="D:\Libraries\projects\python\001 learningTest and small task\a005_pytorch\a002_lesson_src\logs" --port=6006writer.close()
总结
参考文献
[1]
相关文章:
【pytorch】pytorch入门4:神经网络的卷积层
文章目录 前言一、定义概念 缩写二、性质三、代码总结参考文献 前言 使用 B站小土堆课程的笔记 一、定义概念 缩写 卷积层是神经网络中用于突出特征来进行分类任务的层。 二、性质 卷积核例子:vgg16 model 三、代码 添加库 python代码块import os import …...
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
目录 🍔 LSTM介绍 🍔 LSTM的内部结构图 2.1 LSTM结构分析 2.2 Bi-LSTM介绍 2.3 使用Pytorch构建LSTM模型 2.4 LSTM优缺点 🍔 小结 学习目标 🍀 了解LSTM内部结构及计算公式. 🍀 掌握Pytorch中LSTM工具的使用. &…...
QT学习笔记之文件操作
你千万不要跟任何人谈起任何事。你只要一谈起,就会想念起每一个人来。 在ui界面添加一个LineEdit(lEt)、QPushButton(btn)、QWidget widget.cpp #include "widget.h" #include "ui_widget.h" #include <QFile> #include <QFileDialo…...
Mybatis XML配置文件操作数据库
Mybaits在操作数据库时,可以有两种方式;第一种是使用注解的方式操作,另一种是使用XML配置文件的方式:一般而言,若没有特别的要求,则编写一些简单的SQL语句,可以直接使用注解的方式;编…...
Ansible-template模块动态生成特定文件
文章目录 一、Jinja2介绍什么是主要特性安装基本用法进阶特性总结 Jinja2与Ansible关系1. 模板引擎2. Ansible 的依赖3. 变量和模板4. 动态生成配置5. 社区和生态系统总结 二、Ansible如何使用Jinja2使用template模块Jinja2文件中使用判断和循环Jinja2文件中使用判断语法 Jinja…...
【Hadoop】【vim编辑器】【~/.bashrc 文件】如何编辑
1. 进入 vim 编辑器 在终端中输入以下命令: vim ~/.bashrc 2. 进入插入模式 打开文件后,你将处于普通模式。在普通模式下,你不能直接编辑文本。 要进入插入模式,请按下 i 键。这时,你应该会看到屏幕底部出现 -- 插…...
vs code自动报错
让vs code自动报错, 点击插件 → 搜索error lens → 点击install, 下载完后,编写的代码有问题就会自动报错了。 5、修改默认缩进字符 点击设置(settings) → 点击常用设置 → 修改字符缩进。...
详细分析Nginx中的proxy_pass 末尾斜杠
目录 前言1. 基本知识2. Demo 前言 对于Nginx的讲解,更多推荐阅读: Nginx配置静态网页访问(图文界面)Nginx将https重定向为http进行访问的配置(附Demo)Nginx从入门到精通(全)详细分…...
数据结构:双指针—移动0(OJ283)
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0]示例 2: 输入: nums [0] 输出: […...
LeetCode - 850 矩形面积 II
题目来源 850. 矩形面积 II - 力扣(LeetCode) 题目描述 给你一个轴对齐的二维数组 rectangles 。 对于 rectangle[i] [x1, y1, x2, y2],其中(x1,y1)是矩形 i 左下角的坐标, (xi1, yi1) 是该…...
Jenkins Pipeline 中通过勾选参数来控制是否构建 Docker 镜像
1.定义参数: 使用 booleanParam 定义一个布尔参数,示例如下 booleanParam(name: BUILD_DOCKER, description: 是否构建Docker镜像, defaultValue: false)2.使用参数: 在 stage 中,根据参数的值决定构建方式: stage(编…...
C++入门基础知识86(实例)——实例11【计算自然数之和】
成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于计算自然数之和相关内容! 关…...
ChatGPT与R语言融合技术在生态环境数据统计分析、绘图、模型中的实践与进阶应用
自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值…...
OpenAi以及Dify结合生成Ai模型
文章目录 1、Dify介绍2、使用 Dify3、部署Docker1.系统要求2.系统虚拟化3.下载docker 4、安装WSL1.检查是否已经安装 五、访问系统六、添加模型 1、Dify介绍 Dify官方地址。 Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、…...
【漏洞复现】用友 UFIDA /portal/pt/file/upload 任意文件上传漏洞
免责声明: 本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服…...
C:内存函数
目录 前言: 一、memcpy 函数的使用及实现 1、memcpy函数的介绍 1.1 memcpy函数参数解读 2、memcpy函数的使用 3、memcpy函数的模拟实现 二、memmove函数的使用及模拟 1、memmove函数的使用 2、memmove函数的模拟实现 三、memset 函数的使用 1、memset函数的…...
【Web】御网杯信息安全大赛2024 wp(全)
目录 input_data admin flask 如此多的FLAG 一夜醒来之全国CTF水平提升1000倍😋 input_data 访问./.svn后随便翻一翻拿到flag admin dirsearch扫出来 访问./error看出来是java框架 测出来是/admin;/路由打Spring View Manipulation(Java)的SSTI https:/…...
VC++同时处理ANSI和Unicode字符集,除了使用TCHAR和_T()宏外,还有其他方法可以实现吗?
在我的C项目中,如果我需要同时处理ANSI和Unicode字符集,除了使用TCHAR和_T()宏外,还有其他方法可以实现吗? 除了使用 TCHAR 和 _T() 宏之外,还有其他方法可以实现同时处理 ANSI 和 Unicode 字符集: 1. 使用…...
MATLAB定位程序与讲解【专栏介绍】
AOA(到达角度)定位原理: 描述了基于到达角度进行定位的方法,适用于一维、二维或三维空间。 由动静压之比求马赫数的MATLAB函数: 提供了一个计算马赫数的函数,用于流体力学中速度的计算。 三边法定位与三点法…...
机器学习3--numpy
Numpy 一、numpy是什么?二、N维数组三、数组基本操作四、数组的运算 一、numpy是什么? numpy是一个开源的python科学计算库,用于处理任意维度的数组。numpy用ndarray处理多维数组。 import numpy as np np.array创建数组 机器学习数据量很大…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...
【Java】Ajax 技术详解
文章目录 1. Filter 过滤器1.1 Filter 概述1.2 Filter 快速入门开发步骤:1.3 Filter 执行流程1.4 Filter 拦截路径配置1.5 过滤器链2. Listener 监听器2.1 Listener 概述2.2 ServletContextListener3. Ajax 技术3.1 Ajax 概述3.2 Ajax 快速入门服务端实现:客户端实现:4. Axi…...
初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)
零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...
