当前位置: 首页 > news >正文

LLM阅读推荐

(按名称排序)

  • 【徹底解説】これからのエンジニアの必携スキル、プロンプトエンジニアリングの手引「Prompt Engineering Guide」を読んでまとめてみた(opens in a new tab)
  • 3 Principles for prompt engineering with GPT-3(opens in a new tab)
  • A beginner-friendly guide to generative language models - LaMBDA guide(opens in a new tab)
  • A Complete Introduction to Prompt Engineering for Large Language Models(opens in a new tab)
  • A Generic Framework for ChatGPT Prompt Engineering(opens in a new tab)
  • An SEO’s guide to ChatGPT prompts(opens in a new tab)
  • AI Content Generation(opens in a new tab)
  • AI's rise generates new job title: Prompt engineer(opens in a new tab)
  • AI Safety, RLHF, and Self-Supervision - Jared Kaplan | Stanford MLSys #79(opens in a new tab)
  • Awesome Textual Instruction Learning Papers(opens in a new tab)
  • Awesome ChatGPT Prompts(opens in a new tab)
  • Best 100+ Stable Diffusion Prompts(opens in a new tab)
  • Best practices for prompt engineering with OpenAI API(opens in a new tab)
  • Building GPT-3 applications — beyond the prompt(opens in a new tab)
  • Can AI really be protected from text-based attacks?(opens in a new tab)
  • ChatGPT, AI and GPT-3 Apps and use cases(opens in a new tab)
  • ChatGPT Prompts(opens in a new tab)
  • CMU Advanced NLP 2022: Prompting(opens in a new tab)
  • Common Sense as Dark Matter - Yejin Choi | Stanford MLSys #78(opens in a new tab)
  • Create images with your words – Bing Image Creator comes to the new Bing(opens in a new tab)
  • Curtis64's set of prompt gists(opens in a new tab)
  • DALL·E 2 Prompt Engineering Guide(opens in a new tab)
  • DALL·E 2 Preview - Risks and Limitations(opens in a new tab)
  • DALLE Prompt Book(opens in a new tab)
  • DALL-E, Make Me Another Picasso, Please(opens in a new tab)
  • Diffusion Models: A Practical Guide(opens in a new tab)
  • Exploiting GPT-3 Prompts(opens in a new tab)
  • Exploring Prompt Injection Attacks(opens in a new tab)
  • Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious(opens in a new tab)
  • FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering(opens in a new tab)
  • Generative AI with Cohere: Part 1 - Model Prompting(opens in a new tab)
  • Generative AI: Perspectives from Stanford HAI(opens in a new tab)
  • Get a Load of This New Job: "Prompt Engineers" Who Act as Psychologists to AI Chatbots(opens in a new tab)
  • Giving GPT-3 a Turing Test(opens in a new tab)
  • GPT-3 & Beyond(opens in a new tab)
  • GPT3 and Prompts: A quick primer(opens in a new tab)
  • Hands-on with Bing’s new ChatGPT-like features(opens in a new tab)
  • How to Draw Anything(opens in a new tab)
  • How to get images that don't suck(opens in a new tab)
  • How to make LLMs say true things(opens in a new tab)
  • How to perfect your prompt writing for AI generators(opens in a new tab)
  • How to write good prompts(opens in a new tab)
  • If I Was Starting Prompt Engineering in 2023: My 8 Insider Tips(opens in a new tab)
  • Indirect Prompt Injection on Bing Chat(opens in a new tab)
  • Interactive guide to GPT-3 prompt parameters(opens in a new tab)
  • Introduction to Reinforcement Learning with Human Feedback(opens in a new tab)
  • In defense of prompt engineering(opens in a new tab)
  • JailBreaking ChatGPT: Everything You Need to Know(opens in a new tab)
  • Language Models and Prompt Engineering: Systematic Survey of Prompting Methods in NLP(opens in a new tab)
  • Language Model Behavior: A Comprehensive Survey(opens in a new tab)
  • Learn Prompting(opens in a new tab)
  • Meet Claude: Anthropic’s Rival to ChatGPT(opens in a new tab)
  • Methods of prompt programming(opens in a new tab)
  • Mysteries of mode collapse(opens in a new tab)
  • NLP for Text-to-Image Generators: Prompt Analysis(opens in a new tab)
  • NLP with Deep Learning CS224N/Ling284 - Lecture 11: Promting, Instruction Tuning, and RLHF(opens in a new tab)
  • Notes for Prompt Engineering by sw-yx(opens in a new tab)
  • OpenAI Cookbook(opens in a new tab)
  • OpenAI Prompt Examples for several applications(opens in a new tab)
  • Pretrain, Prompt, Predict - A New Paradigm for NLP(opens in a new tab)
  • Prompt Engineer: Tech's hottest job title?(opens in a new tab)
  • Prompt Engineering by Lilian Weng(opens in a new tab)
  • Prompt Engineering 101 - Introduction and resources(opens in a new tab)
  • Prompt Engineering 101: Autocomplete, Zero-shot, One-shot, and Few-shot prompting(opens in a new tab)
  • Prompt Engineering 101(opens in a new tab)
  • Prompt Engineering - A new profession ?(opens in a new tab)
  • Prompt Engineering by co:here(opens in a new tab)
  • Prompt Engineering by Microsoft(opens in a new tab)
  • Prompt Engineering: The Career of Future(opens in a new tab)
  • Prompt engineering davinci-003 on our own docs for automated support (Part I)(opens in a new tab)
  • Prompt Engineering Guide: How to Engineer the Perfect Prompts(opens in a new tab)
  • Prompt Engineering in GPT-3(opens in a new tab)
  • Prompt Engineering Template(opens in a new tab)
  • Prompt Engineering Topic by GitHub(opens in a new tab)
  • Prompt Engineering: The Ultimate Guide 2023 [GPT-3 & ChatGPT](opens in a new tab)
  • Prompt Engineering: From Words to Art(opens in a new tab)
  • Prompt Engineering with OpenAI's GPT-3 and other LLMs(opens in a new tab)
  • Prompt injection attacks against GPT-3(opens in a new tab)
  • Prompt injection to read out the secret OpenAI API key(opens in a new tab)
  • Prompting: Better Ways of Using Language Models for NLP Tasks(opens in a new tab)
  • Prompting for Few-shot Learning(opens in a new tab)
  • Prompting in NLP: Prompt-based zero-shot learning(opens in a new tab)
  • Prompting Methods with Language Models and Their Applications to Weak Supervision(opens in a new tab)
  • Prompts as Programming by Gwern(opens in a new tab)
  • Prompts for communicators using the new AI-powered Bing(opens in a new tab)
  • Reverse Prompt Engineering for Fun and (no) Profit(opens in a new tab)
  • Retrieving Multimodal Information for Augmented Generation: A Survey(opens in a new tab)
  • So you want to be a prompt engineer: Critical careers of the future(opens in a new tab)
  • Simulators(opens in a new tab)
  • Start with an Instruction(opens in a new tab)
  • Talking to machines: prompt engineering & injection(opens in a new tab)
  • Tech’s hottest new job: AI whisperer. No coding required(opens in a new tab)
  • The Book - Fed Honeypot(opens in a new tab)
  • The ChatGPT Prompt Book(opens in a new tab)
  • The ChatGPT list of lists: A collection of 3000+ prompts, examples, use-cases, tools, APIs, extensions, fails and other resources(opens in a new tab)
  • The Most Important Job Skill of This Century(opens in a new tab)
  • The Mirror of Language(opens in a new tab)
  • The Waluigi Effect (mega-post)(opens in a new tab)
  • Thoughts and impressions of AI-assisted search from Bing(opens in a new tab)
  • Unleash Your Creativity with Generative AI: Learn How to Build Innovative Products!(opens in a new tab)
  • Unlocking Creativity with Prompt Engineering(opens in a new tab)
  • Using GPT-Eliezer against ChatGPT Jailbreaking(opens in a new tab)
  • What Is ChatGPT Doing … and Why Does It Work?

相关文章:

LLM阅读推荐

(按名称排序) 【徹底解説】これからのエンジニアの必携スキル、プロンプトエンジニアリングの手引「Prompt Engineering Guide」を読んでまとめてみた(opens in a new tab)3 Principles for prompt engineering with GPT-3(opens in a new tab)A beginn…...

计算机网络笔记001

讲义 1.计算机网络的定义  定义: 一批独立自治的计算机系统的互连集合体  说明: 独立自治的计算机系统, 互连的手段是各种各样的, 依据协议进行 工作  2.计算机网络和通信网络  通信网络: 重点研究通…...

如何用IDEA连接HBase

编写java代码,远程连接HBase进行相关的操作 一、先导依赖 代码如下: 二、连接成功...

【JS代码规范】如何优化if-else代码规范

1. 快速结束&#xff0c;减少没必要的else 案例一&#xff1a;2种互斥的条件判断 function test(data) {let result ;if (data < 0) {result 负数;} else {result 非负数;}return result; }优化一&#xff1a; function test(data) {if (data < 0) {return 负数;} …...

MovieLife 电影生活

MovieLife 电影生活 今天看到一个很有意思的项目&#xff1a;https://www.lampysecurity.com/post/the-infinite-audio-book “我有一个看似愚蠢的想法。通常&#xff0c;这类想法只是一闪而过&#xff0c;很少会付诸实践。但这次有所不同。假如你的生活是一部电影&#xff0c…...

网工内推 | 中级云运维工程师,双休,五险一金

01 博达人才 &#x1f537;招聘岗位&#xff1a;中级云运维工程师 &#x1f537;岗位职责 1、受理数据中心、云租户投诉、受理故障工单&#xff0c;并在时限内完成。 2、协助客户开通云产品&#xff0c;解答客户使用过程中的疑问。 3、处理云产品故障&#xff0c;协助进行故…...

Thingsboard规则链:Related Entity Data节点详解

引言 在复杂的物联网&#xff08;IoT&#xff09;生态系统中&#xff0c;数据的集成与分析是实现高效管理和智能决策的基础。Thingsboard作为一个强大的开源物联网平台&#xff0c;其规则链&#xff08;Rule Chains&#xff09;机制允许用户构建自定义的数据处理流程。其中&am…...

C++结尾

面试题 1.什么是虚函数&#xff1f;什么是纯虚函数 在定义函数时前面加virtual。虚函数是为了&#xff0c;父子类中只有一个该函数。如果在子类重写虚函数&#xff0c;那么用的就是子类重写的虚函数&#xff1b;如果子类没有重写虚函数&#xff0c;那么调用的是父类继承的虚函…...

Flutter鸿蒙化环境配置(windows)

Flutter鸿蒙化环境配置&#xff08;windows&#xff09; 参考资料Window配置Flutter的鸿蒙化环境下载配置环境变量HarmonyOS的环境变量配置配置Flutter的环境变量Flutter doctor -v 检测的问题flutter_flutter仓库地址的警告问题Fliutter doctor –v 报错[!] Android Studio (v…...

Vue入门之生命周期

文章目录 一、Vue 生命周期概述二、生命周期的四个阶段1. 创建阶段2. 挂载阶段3. 更新阶段4. 销毁阶段 三、代码案例四、总结 在 Vue 开发中&#xff0c;理解生命周期是非常重要的。Vue 的生命周期可以帮助我们在不同的阶段执行特定的逻辑&#xff0c;从而更好地控制组件的行为…...

UNI-SOP应用场景(1)- 纯前端预开发

在平时新项目开发中&#xff0c;前端小伙伴是否有这样的经历&#xff0c;hi&#xff0c;后端小伙伴们&#xff0c;系统啥时候能登录&#xff0c;啥时候能联调了&#xff0c;这是时候往往得到的回答就是&#xff0c;再等等&#xff0c;我们正在搭建系统呢&#xff0c;似曾相识的…...

力扣9.23

1014. 最佳观光组合 给你一个正整数数组 values&#xff0c;其中 values[i] 表示第 i 个观光景点的评分&#xff0c;并且两个景点 i 和 j 之间的 距离 为 j - i。 一对景点&#xff08;i < j&#xff09;组成的观光组合的得分为 values[i] values[j] i - j &#xff0c;…...

[Redis][事务]详细讲解

目录 0.什么是事务&#xff1f;1.Redis 事务本质2.Redis 事务意义3.事务操作1.MULTI2.EXEC3.DISCARD4.WATCH5.UNWATCH 0.什么是事务&#xff1f; Redis的事务和MySQL的事务概念上是类似的&#xff0c;都是把一系列操作绑定成一组&#xff0c;让这一组能够批量执行Redis事务和M…...

Latex——一行的划线 如何分开

代码&#xff1a; \cmidrule(r){3-4} \cmidrule(r){5-6} \cmidrule(r){7-8}效果&#xff1a; 参考文章&#xff1a; LaTeX技巧653&#xff1a;如何隔开LaTeX表格邻近\cline表格线&#xff1f;...

大数据:快速入门Scala+Flink

一、什么是Scala Scala 是一种多范式编程语言&#xff0c;它结合了面向对象编程和函数式编程的特性。Scala 这个名字是“可扩展语言”&#xff08;Scalable Language&#xff09;的缩写&#xff0c;意味着它被设计为能够适应不同规模的项目&#xff0c;从小型脚本到大型分布式…...

侧边菜单的展开和折叠

环境准备&#xff1a;Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单&#xff0c;默认折叠 const isCollapse ref(true)</script><template><el-container><el-aside><el-menu:collapse"isCo…...

自动化办公-Python中的for循环

for 循环是 Python 中用于迭代&#xff08;遍历&#xff09;序列&#xff08;如列表、元组、字典、集合、字符串&#xff09;或其他可迭代对象的控制结构。它允许您逐一访问序列中的每个元素&#xff0c;并对其执行操作。以下是对 for 循环的详细介绍&#xff0c;包括语法、使用…...

Python_itertools

itertools itertools.count(start, step) 返回一个无限迭代器&#xff0c;从指定的start开始&#xff0c;每次增加step。 import itertools # 从1开始&#xff0c;每次增加1&#xff0c;输出前5个数 for i in itertools.count(1, 1):if i > 5:breakprint(i)运行结果&#…...

Apache Iceberg 数据类型参考表

Apache Iceberg 概述-链接 Apache Iceberg 数据类型参考表 数据类型描述实例方法注意事项BOOLEAN布尔类型&#xff0c;表示真或假true, false用于条件判断&#xff0c;例如 WHERE is_active true。确保逻辑条件的正确性。INTEGER32位有符号整数42, -7可用于计算、聚合&#xf…...

职责链模式

职责链模式 责任链&#xff08;Chain of Responsibility&#xff09;模式&#xff1a;为了避免请求发送者与多个请求处理者耦合在一起&#xff0c;于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链&#xff1b;当有请求发生时&#xff0c;可将请求沿着这…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

Java数组Arrays操作全攻略

Arrays类的概述 Java中的Arrays类位于java.util包中&#xff0c;提供了一系列静态方法用于操作数组&#xff08;如排序、搜索、填充、比较等&#xff09;。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序&#xff08;sort&#xff09; 对数组进行升序…...