机器学习笔记 - week6 -(十一、机器学习系统的设计)
11.1 首先要做什么
在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间。
本周以一个垃圾邮件分类器算法为例进行讨论。
为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量。我们可以选择一个由100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为1,不出现为0),尺寸为100×1。
为了构建这个分类器算法,我们可以做很多事,例如:
- 收集更多的数据,让我们有更多的垃圾邮件和非垃圾邮件的样本
- 基于邮件的路由信息开发一系列复杂的特征
- 基于邮件的正文信息开发一系列复杂的特征,包括考虑截词的处理
- 为探测刻意的拼写错误(把watch 写成w4tch)开发复杂的算法
在上面这些选项中,非常难决定应该在哪一项上花费时间和精力,作出明智的选择,比随着感觉走要更好。当我们使用机器学习时,总是可以“头脑风暴”一下,想出一堆方法来试试。实际上,当你需要通过头脑风暴来想出不同方法来尝试去提高精度的时候,你可能已经超越了很多人了。大部分人并不尝试着列出可能的方法,他们做的只是某天早上醒来,因为某些原因有了一个突发奇想:"让我们来试试用Honey Pot项目收集大量的数据吧。"
我们将在随后的课程中讲误差分析,我会告诉你怎样用一个更加系统性的方法,从一堆不同的方法中,选取合适的那一个。因此,你更有可能选择一个真正的好方法,能让你花上几天几周,甚至是几个月去进行深入的研究。
11.2 误差分析
在本次课程中,我们将会讲到误差分析(Error Analysis)的概念。这会帮助你更系统地做出决定。如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量;而是构建一个简单的算法,这样你可以很快地实现它。
构建一个学习算法的推荐方法为:
- 从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法
- 绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择
- 进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的样本,看看这些样本是否有某种系统化的趋势
以我们的垃圾邮件过滤器为例,误差分析要做的既是检验交叉验证集中我们的算法产生错误预测的所有邮件,看:是否能将这些邮件按照类分组。例如医药品垃圾邮件,仿冒品垃圾邮件或者密码窃取邮件等。然后看分类器对哪一组邮件的预测误差最大,并着手优化。
思考怎样能改进分类器。例如,发现是否缺少某些特征,记下这些特征出现的次数。
例如记录下错误拼写出现了多少次,异常的邮件路由情况出现了多少次等等,然后从出现次数最多的情况开始着手优化。
误差分析并不总能帮助我们判断应该采取怎样的行动。有时我们需要尝试不同的模型,然后进行比较,在模型比较时,用数值来判断哪一个模型更好更有效,通常我们是看交叉验证集的误差。
在我们的垃圾邮件分类器例子中,对于“我们是否应该将discount/discounts/discounted/discounting处理成同一个词?”如果这样做可以改善我们算法,我们会采用一些截词软件。误差分析不能帮助我们做出这类判断,我们只能尝试采用和不采用截词软件这两种不同方案,然后根据数值检验的结果来判断哪一种更好。
因此,当你在构造学习算法的时候,你总是会去尝试很多新的想法,实现出很多版本的学习算法,如果每一次你实践新想法的时候,你都要手动地检测这些例子,去看看是表现差还是表现好,那么这很难让你做出决定。到底是否使用词干提取,是否区分大小写。但是通过一个量化的数值评估,你可以看看这个数字,误差是变大还是变小了。你可以通过它更快地实践你的新想法,它基本上非常直观地告诉你:你的想法是提高了算法表现,还是让它变得更坏,这会大大提高你实践算法时的速度。所以我强烈推荐在交叉验证集上来实施误差分析,而不是在测试集上。但是,还是有一些人会在测试集上来做误差分析。即使这从数学上讲是不合适的。所以我还是推荐你在交叉验证向量上来做误差分析。
总结一下,当你在研究一个新的机器学习问题时,我总是推荐你实现一个较为简单快速、即便不是那么完美的算法。我几乎从未见过人们这样做。大家经常干的事情是:花费大量的时间在构造算法上,构造他们以为的简单的方法。因此,不要担心你的算法太简单,或者太不完美,而是尽可能快地实现你的算法。当你有了初始的实现之后,它会变成一个非常有力的工具,来帮助你决定下一步的做法。因为我们可以先看看算法造成的错误,通过误差分析,来看看他犯了什么错,然后来决定优化的方式。另一件事是:假设你有了一个快速而不完美的算法实现,又有一个数值的评估数据,这会帮助你尝试新的想法,快速地发现你尝试的这些想法是否能够提高算法的表现,从而你会更快地做出决定,在算法中放弃什么,吸收什么误差分析可以帮助我们系统化地选择该做什么。
11.3 类偏斜的误差度量
在前面的课程中,我提到了误差分析,以及设定误差度量值的重要性。那就是,设定某个实数来评估你的学习算法,并衡量它的表现,有了算法的评估和误差度量值。有一件重要的事情要注意,就是使用一个合适的误差度量值,这有时会对于你的学习算法造成非常微妙的影响,这件重要的事情就是偏斜类(skewed classes)的问题。类偏斜情况表现为我们的训练集中有非常多的同一种类的样本,只有很少或没有其他类的样本。
例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤。假设我们编写一个非学习而来的算法,在所有情况下都预测肿瘤是良性的,那么误差只有0.5%。然而我们通过训练而得到的神经网络算法却有1%的误差。这时,误差的大小是不能视为评判算法效果的依据的。
查准率(Precision)和查全率(Recall) 我们将算法预测的结果分成四种情况:
- 正确肯定(True Positive,TP):预测为真,实际为真
- 正确否定(True Negative,TN):预测为假,实际为假
- 错误肯定(False Positive,FP):预测为真,实际为假
- 错误否定(False Negative,FN):预测为假,实际为真
则:查准率=TP/(TP+FP)。例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。
查全率=TP/(TP+FN)。例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。
这样,对于我们刚才那个总是预测病人肿瘤为良性的算法,其查全率是0。
预测值 | |||
---|---|---|---|
Positive | Negtive | ||
实际值 | Positive | TP | FN |
Negtive | FP | TN |
11.4 查准率和查全率之间的权衡
在之前的课程中,我们谈到查准率和召回率,作为遇到偏斜类问题的评估度量值。在很多应用中,我们希望能够保证查准率和召回率的相对平衡。
在这节课中,我将告诉你应该怎么做,同时也向你展示一些查准率和召回率作为算法评估度量值的更有效的方式。继续沿用刚才预测肿瘤性质的例子。假使,我们的算法输出的结果在0-1 之间,我们使用阀值0.5 来预测真和假。

- 查准率(Precision)=TP/(TP+FP)
例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。 - 查全率(Recall)=TP/(TP+FN)
例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。
- 如果我们希望只在非常确信的情况下预测为真(肿瘤为恶性),即我们希望更高的查准率,我们可以使用比0.5更大的阀值,如0.7,0.9。这样做我们会减少错误预测病人为恶性肿瘤的情况,同时却会增加未能成功预测肿瘤为恶性的情况。
- 如果我们希望提高查全率,尽可能地让所有有可能是恶性肿瘤的病人都得到进一步地检查、诊断,我们可以使用比0.5更小的阀值,如0.3。
我们可以将不同阀值情况下,查全率与查准率的关系绘制成图表,曲线的形状根据数据的不同而不同:

我们希望有一个帮助我们选择这个阀值的方法。一种方法是计算F1 值(F1 Score),其计算公式为:
我们选择使得F1值最高的阀值。
11.5 机器学习的数据
在之前的视频中,我们讨论了评价指标。在这个视频中,我要稍微转换一下,讨论一下机器学习系统设计中另一个重要的方面,这往往涉及到用来训练的数据有多少。在之前的一些视频中,我曾告诫大家不要盲目地开始,而是花大量的时间来收集大量的数据,因为数据有时是唯一能实际起到作用的。但事实证明,在一定条件下,我会在这个视频里讲到这些条件是什么。得到大量的数据并在某种类型的学习算法中进行训练,可以是一种有效的方法来获得一个具有良好性能的学习算法。而这种情况往往出现在这些条件对于你的问题都成立。
并且你能够得到大量数据的情况下。这可以是一个很好的方式来获得非常高性能的学习算法。因此,在这段视频中,让我们一起讨论一下这个问题。
很多很多年前,我认识的两位研究人员Michele Banko 和Eric Brill进行了一项有趣的研究,他们尝试通过机器学习算法来区分常见的易混淆的单词,他们尝试了许多种不同的算法,并发现数据量非常大时,这些不同类型的算法效果都很好。

比如,在这样的句子中:早餐我吃了__个鸡蛋(to,two,too),在这个例子中,“早餐我吃了2个鸡蛋”,这是一个易混淆的单词的例子。于是他们把诸如这样的机器学习问题,当做一类监督学习问题,并尝试将其分类,什么样的词,在一个英文句子特定的位置,才是合适的。他们用了几种不同的学习算法,这些算法都是在他们2001年进行研究的时候,都已经被公认是比较领先的。因此他们使用了一个方差,用于逻辑回归上的一个方差,被称作"感知器"(perceptron)。他们也采取了一些过去常用,但是现在比较少用的算法,比如 Winnow算法,很类似于回归问题,但在一些方面又有所不同,过去用得比较多,但现在用得不太多。还有一种基于内存的学习算法,现在也用得比较少了,但是我稍后会讨论一点,而且他们用了一个朴素算法。这些具体算法的细节不那么重要,我们下面希望探讨,什么时候我们会希望获得更多数据,而非修改算法。他们所做的就是改变了训练数据集的大小,并尝试将这些学习算法用于不同大小的训练数据集中,这就是他们得到的结果。

这些趋势非常明显,首先大部分算法,都具有相似的性能,其次,随着训练数据集的增大,在横轴上代表以百万为单位的训练集大小,从0.1个百万到1000百万,也就是到了10亿规模的训练集的样本,这些算法的性能也都对应地增强了。
事实上,如果你选择任意一个算法,可能是选择了一个"劣等的"算法,如果你给这个劣等算法更多的数据,那么从这些例子中看起来的话,它看上去很有可能会其他算法更好,甚至会比"优等算法"更好。由于这项原始的研究非常具有影响力,因此已经有一系列许多不同的研究显示了类似的结果。这些结果表明,许多不同的学习算法有时倾向于表现出非常相似的表现,这还取决于一些细节,但是真正能提高性能的,是你能够给一个算法大量的训练数据。像这样的结果,引起了一种在机器学习中的普遍共识:"取得成功的人不是拥有最好算法的人,而是拥有最多数据的人"。
那么这种说法在什么时候是真,什么时候是假呢?因为如果我们有一个学习算法,并且如果这种说法是真的,那么得到大量的数据通常是保证我们具有一个高性能算法的最佳方式,而不是去争辩应该用什么样的算法。
假如有这样一些假设,在这些假设下有大量我们认为有用的训练集,我们假设在我们的机器学习问题中,特征值包含了足够的信息,这些信息可以帮助我们用来准确地预测
,例如,如果我们采用了一些容易混淆的词,如:two、to、too,假如说它能够描述
,捕捉到需要填写的空白处周围的词语,那么特征捕捉到之后,我们就希望有对于“早饭我吃了__鸡蛋”,那么这就有大量的信息来告诉我中间我需要填的词是“两个”(two),而不是单词 to 或too,因此特征捕捉,哪怕是周围词语中的一个词,就能够给我足够的信息来确定出标签
是什么。换句话说,从这三组易混淆的词中,我应该选什么词来填空。
那么让我们来看一看,大量的数据是有帮助的情况。假设特征值有足够的信息来预测值,假设我们使用一种需要大量参数的学习算法,比如有很多特征的逻辑回归或线性回归,或者用带有许多隐藏单元的神经网络,那又是另外一种带有很多参数的学习算法,这些都是非常强大的学习算法,它们有很多参数,这些参数可以拟合非常复杂的函数,因此我要调用这些,我将把这些算法想象成低偏差算法,因为我们能够拟合非常复杂的函数,而且因为我们有非常强大的学习算法,这些学习算法能够拟合非常复杂的函数。很有可能,如果我们用这些数据运行这些算法,这种算法能很好地拟合训练集,因此,训练误差就会很低了。
现在假设我们使用了非常非常大的训练集,在这种情况下,尽管我们希望有很多参数,但是如果训练集比参数的数量还大,甚至是更多,那么这些算法就不太可能会过度拟合。也就是说训练误差有希望接近测试误差。
另一种考虑这个问题的角度是为了有一个高性能的学习算法,我们希望它不要有高的偏差和方差。
因此偏差问题,我么将通过确保有一个具有很多参数的学习算法来解决,以便我们能够得到一个较低偏差的算法,并且通过用非常大的训练集来保证。
我们在此没有方差问题,我们的算法将没有方差,并且通过将这两个值放在一起,我们最终可以得到一个低误差和低方差的学习算法。这使得我们能够很好地测试测试数据集。从根本上来说,这是一个关键的假设:特征值有足够的信息量,且我们有一类很好的函数,这是为什么能保证低误差的关键所在。它有大量的训练数据集,这能保证得到更多的方差值,因此这给我们提出了一些可能的条件,如果你有大量的数据,而且你训练了一种带有很多参数的学习算法,那么这将会是一个很好的方式,来提供一个高性能的学习算法。
我觉得关键的测试:首先,一个人类专家看到了特征值 ,能很有信心的预测出
值吗?因为这可以证明
可以根据特征值
被准确地预测出来。其次,我们实际上能得到一组庞大的训练集,并且在这个训练集中训练一个有很多参数的学习算法吗?如果你不能做到这两者,那么更多时候,你会得到一个性能很好的学习算法。

喜欢的朋友记得点赞、收藏、关注哦!!!
相关文章:

机器学习笔记 - week6 -(十一、机器学习系统的设计)
11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强…...

对c语言中的指针进行深入全面的解析
1.普通的指针: 实际上指针就是存放地址的变量,eg: int a10; int *p&a; 拆分一下int *中的*说明p是一个指针,int是它所指向的类型; 2.字符串指针和字符串数组 char*str1"abcd"; 先看这一个,这个就是一个字符串…...

xxl-job 适配达梦数据库
前言 在数字化转型的浪潮中,任务调度成为了后端服务不可或缺的一部分。XXL-JOB 是一个轻量级、分布式的任务调度框架,广泛应用于各种业务场景。达梦数据库(DM),作为一款国内领先的数据库产品,已经被越来越…...

Linux 配置与管理 SWAP(虚拟内存)
Linux 配置与管理 SWAP(虚拟内存) 一、作用二、创建交换文件(以创建一个2GB的交换文件为例)1. 创建交换文件2. 设置文件权限2.1. **关于 sudo chmod 600 /root/swapfile 是否一定要执行**2.2. **关于其他用户启动是否没权限用到交换分区** 3.…...

yolo自动化项目实例解析(七)自建UI--工具栏选项
在上一章我们基本实现了关于预览窗口的显示,现在我们主要完善一下工具栏菜单按键 一、添加工具栏ui 1、配置文件读取 我们后面要改的东西越来越多了,先加个变量文件方便我们后面调用 下面我们使用的config.get意思是从./datas/setting.ini文件中读取关键…...

贝锐洋葱头浏览器随时随地访问教务系统,轻松搞定选课
教育网的“拥堵”早已是老生常谈,学生数量庞大、上网时间集中、带宽有限,导致网络速度慢。尤其是从外部网络访问教育网时,更是因为跨运营商的缘故变得缓慢。 而学校内网也是类似的情况,课余时间和上课时间的网络使用情况差别巨大…...

django drf to_internal_value
使用场景 用于将接收到的输入转换为内部可用的数据形式; 例子 to_internal_value主要在反序列化时用到,其作用处理API请求携带的数据,对其进行验证并转化为Python的数据类型。 假如我们的API客户端通过请求提交了额外的数据,比…...

map(lambda x: x[0], sorted(count.items(), key=lambda x: (-x[1], x[0]))[:n])
被解析的代码行 map(lambda x: x[0], sorted(count.items(), keylambda x: (-x[1], x[0]))[:n])假设的输入 假设我们有以下的 count 字典,其中包括一些字符串及其对应的计数: count {apple: 3,banana: 1,orange: 2,grape: 2 }1. count.items() 首先…...

灰度重心法求取图像重心
1 概述 灰度重心法(Gray-scale Center of Mass Method)是一种在图像处理和计算机视觉中常用的方法。这种方法主要用于确定图像中物体的质心或重心位置,特别是在灰度图像中。 灰度重心法的基本思想是,根据图像中每个像素的灰度值及其位置信息来计算一个加权重心,这个重心…...

Go Mail设置指南:如何提升发送邮件效率?
Go Mail使用技巧与配置教程?如何用Go Mail实现发信? 随着工作负载的增加,如何高效地发送和管理邮件成为了许多职场人士面临的挑战。AokSend将为您提供一份详细的Go Mail设置指南,帮助您提升发送邮件的效率,让您的邮件…...

kali的tplmap使用报错解决
问题 当我们直接使用kali下的tplmap时报错了。 Tplmap 0.5 Automatic Server-Side Template Injection Detection and Exploitation Tool Testing if GET parameter name is injectable Exiting: module collections has no attribute Mapping 这是因为tplmap要求的版本…...

DAY16||513.找树左下角的值 |路径总和|从中序与后序遍历序列构造二叉树
513.找树左下角的值 题目:513. 找树左下角的值 - 力扣(LeetCode) 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1示例 2: 输入: […...

使用jQuery处理Ajax
使用jQuery处理Ajax HTTP协议 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议 设计HTTP最初的目的是为了提供一种发布和接收HTML页面的方法 所有的WWW文件都必须遵守这个标准 一次HTTP操作称为一个事务&am…...

uni-app App版本更新
效果图: 前言 在移动应用开发中,确保用户能够及时更新到最新版本是非常重要的。本文将介绍如何在 uni-app 中实现 App 整包更新功能,并提供相关代码示例以帮助理解。 代码实现 2.1 引入模块 首先,我们需要引入用于处理更新的模块…...

Python Web 与低代码/无代码平台的深度融合
Python Web 与低代码/无代码平台的深度融合 目录 🚀 低代码与无代码平台的兴起🔗 Python 与低代码平台集成🌐 低代码开发的最佳实践📊 数据集成与自动化 1. 🚀 低代码与无代码平台的兴起 低代码和无代码平台的出现&…...

js 如何监听 body 内容是否改变
如果您想监听body内容的变化,并作出响应,可以使用MutationObserver。以下是一个简单的例子,它会在body内容变化时在控制台输出一条消息: // 创建一个观察者对象 const observer new MutationObserver(function(mutations, obser…...

python: 数字类型的一些函数
len(str) round(x, d) 对x进行四舍五入保留小数点后d位 round(3.45,1) 即 3.5 pow(x, y) # x的y次幂. x ** y pow(x, y[,z]) # 幂余 ( x ** y) % z print(pow(3, pow(3, 99), 10000)) #4587 浮点数…...

MapReduce学习与理解
MapReduce为google分布式三驾马车之一。分别为《The Google File System》、《MapReduce: Simplified Data Processing on Large Clusters》、《Bigtable: A Distributed Storage System for Structured Data》。三遍论文奠定了分布式存储和计算的基础。本篇文章来说说mapreduc…...

Animal objDog = new Dog()和 Dog objDog = new Dog()的区别
文章目录 1、Animal objDog new Dog()和 Dog objDog new Dog()的区别1. **对象类型(引用类型)**2. **调用和可用成员**3. **示例代码来说明**使用示例总结 2、Animal objDog new Dog();不能调用dog的方法和属性是为什么?原因解析解决方法小…...

springboot引入netty
配置类 import cn.hutool.core.thread.ThreadUtil; import io.netty.bootstrap.ServerBootstrap; import io.netty.buffer.PooledByteBufAllocator; import io.netty.channel.*; import io.netty.channel.nio.NioEventLoopGroup; import io.netty.channel.socket.SocketChanne…...

PWM基础与信号控制
1. 什么是PWM? PWM(Pulse Width Modulation,脉宽调制)是一种通过改变信号的占空比来控制电压输出的技术。简单来说,PWM信号由一系列高低电平组成,通过调节高电平持续的时间比例,可以控制信号的…...

nvm,一款nodejs版本管理工具
背景 在工作中,我们可能同时在进行2个或者多个不同的项目开发,每个项目的需求不同,进而不同项目必须依赖不同版本的NodeJS运行环境,这种情况下,对于维护多个版本的node将会是一件非常麻烦的事情,nvm就是为…...

数据处理与统计分析篇-day11-RFM模型案例
会员价值度模型介绍 会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标之一。 价值度模型一般基于交易行为产生,衡量的是有实体转化价值的行为。常用的价值度模型是RFM RFM模型是根据…...

【PostgreSQL】PostgreSQL数据库允许其他IP连接到数据库(Windows Linux)
要让PostgreSQL数据库允许其他IP连接到数据库,需要进行以下几个步骤的配置: 1. 修改postgresql.conf文件 首先,需要修改PostgreSQL的主配置文件postgresql.conf,允许数据库监听所有IP的连接请求。 1.1 找到postgresql.conf文件…...

通义千问:让我的编程工作效率翻倍的秘密武器
在日益繁忙的工作环境中,选择合适的编程工具已成为提升开发者工作效率的关键。不同的工具能够帮助我们简化代码编写、自动化任务、提升调试速度,甚至让团队协作更加顺畅。在这篇博客中,我将分享一个让我工作效率翻倍的编程工具——通义千问大…...

2.Seata 1.5.2 集成Springcloud-alibaba
一.Seata-server搭建已完成前提下 详见 Seata-server搭建 二.Springcloud 项目集成Seata 项目整体测试业务逻辑是创建订单后(为了演示分布式事务,不做前置库存校验),再去扣减库存。库存不够的时候,创建的订单信息数…...

python 图像绘制问题: 使用turtle库绘制蟒蛇
turtle (海龟)库是turtle绘图体系的python实现。 1969年诞生,主要用于程序设计入门。 import turtle turtle.setup(650, 350, 200, 200) # 设置窗体(宽,高,窗体左上角x坐标,y坐标) turtl…...

大模型分布式训练并行技术(七)-自动并行
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,传统的单机单卡模式已经无法满足超大模型进行训练的要求。因此,我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。 而利用AI集群&a…...

网络安全等级保护 | 规范企业网络系统安全使用 | 天锐股份助力等保制度落地
在当今数字化高速发展的时代,网络安全对于企业的重要性日益凸显。而近年来,数据泄露、网络攻击等安全事件频发,给企业和个人带来了前所未有的挑战。在这一背景下,网络安全等级保护制度(简称“等保”)作为国…...

Springboot使用redis,以及解决redis缓存穿透,击穿,雪崩等问题
1.Redis面试题-缓存穿透,缓存击穿,缓存雪崩 1 穿透: 两边都不存在(皇帝的新装) (返回空值)(互斥锁)(黑名单) (布隆过滤器) 2 击穿:一个或多个热…...