当前位置: 首页 > news >正文

无限大薄板的电场

单块无限大薄板两端的电场

单块无限大的薄板,如果上面带有均匀分布的电荷,就会在薄板的两侧产生电场,电场大小与距离平板的位置无关,方向与平板垂直,如果平板带正电荷,则电场方向向外指向两侧,如果平板带负电荷,两侧的电场方向向内指向平板

公式

E = σ 2 ϵ 0 E = \frac{\sigma}{2\epsilon_0} E=2ϵ0σ

其中:

  • E E E 是电场的大小
  • σ \sigma σ 是电荷密度
  • ϵ 0 \epsilon_0 ϵ0 是真空介电常数, 1 4 π ϵ 0 = 9 ∗ 1 0 9 \frac{1}{4\pi\epsilon_0} = 9 * 10^9 4πϵ01=9109

解释

1.对称性

图示

平板产生的电场示意图

因为平板上的电荷是均匀分布的,所以在 p 点处的电场通过两个对称的电荷 d q 1 dq_1 dq1 d q 2 dq_2 dq2 叠加后的电场方向为水平方向,与平板垂直,又因为平板无限大,所以每个位置都可以找到对称的两个部分产生水平的叠加电场,同时因为是均匀分布的电荷,所以在电场两侧产生的电场是一样大的。

2.利用高斯定律计算

图示

薄平板电场

利用高斯定律,如下图所示,选取圆柱形的封闭曲面,曲面的上下两个面与平板的距离相等,中心部分的电荷量为

Q = σ A Q = \sigma A Q=σA

其中

  • Q Q Q 是图中红色部分的电荷量
  • σ \sigma σ 是平板上的电荷密度
  • A A A 是图中红色部分的面积

根据高斯定律,穿过这个封闭曲面的电通量等于封闭曲面中的总的电荷量除以真空介电常数。

E A + E A + 0 = σ A ϵ 0 EA + EA + 0 = \frac{\sigma A}{\epsilon_0} EA+EA+0=ϵ0σA

其中两个 EA 是上下两个平面的电通量,0 是圆柱的曲面上没有电场通过,等号右侧是高斯定律的结论。

整理得

E = σ 2 ϵ 0 E = \frac{\sigma}{2\epsilon_0} E=2ϵ0σ

两个无限大薄板的电场

如下图,两个均匀分布的无线大薄板产生的电场,一个带正电荷,另一个带相同电荷密度的负电荷。

图示

两个平板的电场

公式

E = σ ϵ 0 E = \frac{\sigma}{\epsilon_0} E=ϵ0σ

其中

  • E E E 是电场的大小
  • σ \sigma σ 是电荷密度
  • ϵ 0 \epsilon_0 ϵ0 是真空介电常数, 1 4 π ϵ 0 = 9 ∗ 1 0 9 \frac{1}{4\pi\epsilon_0} = 9 * 10^9 4πϵ01=9109

解释

由于无限大的薄板电场与距离无关,所以带正电荷的薄板产生的电场如图中的红色标识所示,带负电荷的薄板产生的电场如图中的绿色标识所示,经过电场叠加,两个薄板之外的电场大小相等,方向相反,相互抵消,两个薄板之间的电场相互叠加,方向相同,大小相等,所以变为单板的 2 倍,因此得到最终的电场为

E = σ ϵ 0 E = \frac{\sigma}{\epsilon_0} E=ϵ0σ

参考

【麻省理工公开课:电和磁】 https://www.bilibili.com/video/BV1rW41147od/?p=3

【[中英字幕]2018年麻省理工MITx 8.02.1x 电学和磁学-静电学 Electricity and Magnetism-Electrostatics】 https://www.bilibili.com/video/BV16m4y1w7P8/?p=45

相关文章:

无限大薄板的电场

单块无限大薄板两端的电场 单块无限大的薄板,如果上面带有均匀分布的电荷,就会在薄板的两侧产生电场,电场大小与距离平板的位置无关,方向与平板垂直,如果平板带正电荷,则电场方向向外指向两侧,…...

外包干了1个多月,技术明显退步了。。。。。

回望过去,我是一名普通的本科生,2019年有幸通过校园招聘踏入了广州一家软件公司的大门,成为了一名功能测试工程师。岁月如梭,转眼间,我已在这个岗位上默默耕耘了近四年。起初,我对这份工作充满了热情与期待…...

芝法酱学习笔记(0.4)——SpringBoot多模块项目打包,resource分离,lib分离,启动脚本

前言 上期讲了如何在windows平台搭建Java后端的开发环境,并给出了一个简单的hello world级别的多模块代码示例。但上期仅仅是在IDEA中运行,和正式的生产环境完全不同。 本期将讲解,如何配置SpringBoot多模块项目的maven打包,并分…...

进程(一万字学习笔记)

------------------------本文为学习进程记录的学习笔记,如有问题欢迎指正 -------------------------- 目录 1.定义 2.进程的种类 2.进程的内存布局 3.进程控制块(PCB) 4.进程源语 fork() 写时复制 exec() execl函数 wait() #进…...

Docker实践与应用:深度探索与丰富案例

一、引言 在当今的软件开发和运维领域,Docker已经成为了一种不可或缺的技术。它以容器化的方式改变了软件的开发、部署和运行模式,为企业和开发者带来了前所未有的便利和效率提升。本文将深入探讨Docker的实践操作以及丰富的应用举例,带您全面…...

信息安全工程师(21)安全协议

前言 安全协议是建立在密码体制基础上的一种交互通信协议,它运用密码算法和协议逻辑来实现认证、密钥分配、数据机密性、完整性和抗否认性等安全目标。 一、定义与目的 安全协议旨在确保网络环境中信息交换的安全性,通过密码技术和协议逻辑来保护数据的机…...

Starrocks with 嵌套

在某些场景下需要进行 with 嵌套 需要以下进行处理,报如图错误 with abc as (select * from .. ) insert into xxx select * from abc尝试创建物化视图 CREATE MATERIALIZED VIEW IF NOT EXISTS ads_test.xxx_mv REFRESH DEFERRED MANUAL AS with abc as (select…...

ubuntu 安装neo4j

在Ubuntu上安装Neo4j的步骤如下: 1.更新包管理器的索引列表: sudo apt update 2.导入Neo4j的GPG密钥: wget -O - https://debian.neo4j.org/neotechnology.gpg.key | sudo apt-key add - 3.添加Neo4j的仓库到APT源列表: ech…...

云计算课程作业1

作业1 Xmanager连接 rhel连接 作业2 首先确认你的虚拟机设置的是NAT 1-3 然后打开这篇blog,并完成第一步和第二步 因为我们是NAT,所以不需要连接网桥,即跳过第三步,但是这里ping一下测试网络连接 2- 如果到这里你发现提示yum…...

建筑智能,推动智慧社区发展

建筑智能已经成为现代城市建设的热门词汇。它不仅是提高城市建筑现代化水平的必由之路,也是未来城市智能化的重要标志。其中,智能社区是建筑智能化的重要环节之一。 智能社区是指以信息技术为基础,通过信息技术实现社区设施设备网络化、监管…...

conda 虚拟环境安装GDAL

一. 背景 换了新电脑,要重新安装GDAL。从前是下了GDAL的.wheel文件用pip安装,但平时下轮子的网站现在都打不开,比如https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal,不晓得为什么。 后面看了这篇教程解决了问题(h…...

STM32转AT32代码转换

1. 引言 在嵌入式开发中,我们经常会遇到更换单片机芯片的事情,若芯片是同一厂家的还好说,若是不同厂家的则需要重新写,重新调,重新去学习其底层驱动程序,比较费时费力。如:ST32转AT32、ST32转G…...

vue中怎么覆盖 sytle中的样式

好的&#xff0c;下面是一个具体的例子&#xff0c;展示如何在 Vue 组件中覆盖样式。 示例&#xff1a;覆盖组件样式 假设我们有一个组件 MyComponent.vue&#xff0c;其中包含一些样式&#xff1a; <template><div class"my-component"><h1>标…...

php中打印函数

在PHP中&#xff0c;打印函数主要用于输出或显示数据。常用的打印函数包括&#xff1a; 1.echo- 可以输出一个或多个字符串。 echo "Hello, World!"; echo "Hello", " ", "World!"; 2.print - 功能与echo相似&#xff0c;但print只能…...

[单master节点k8s部署]23.构建EFK日志收集平台(二)

部署elasticsearch集群 已经完成的工作&#xff1a;创建存储。首先配置了nfs存储提供商&#xff08;nfs-deployment.yaml&#xff09;&#xff0c;然后通过创建存储类&#xff08;storageclass.yaml&#xff09;来将nfs服务器与存储类绑定&#xff1a; [rootmaster 31efk]# c…...

C#的属性(Property)应用说明(二)

Property的应用说明补充&#xff1a; 一.自定义逻辑&#xff1a; 可以在 get 和 set 访问器中包含自定义的逻辑。 public class Person {private string name;public string Name{get { return name; }set{if (string.IsNullOrWhiteSpace(value))throw new ArgumentException…...

VUE.js笔记

1.介绍vue Vue 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;并提供了一套声明式的、组件化的编程模型&#xff0c;帮助你高效地开发用户界面。无论是简单还是复杂的界面&#xff0c;Vue 都可以胜任。 Vue 应用程序的基本…...

SpringBoot--yml配置文件的时间/大小的单位转换

原文网址&#xff1a;SpringBoot--yml配置文件的时间/大小的单位转换_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍SpringBoot的yml&#xff08;properties&#xff09;配置文件的时间/大小的单位转换。 概述 SpringBoot可以将yml中的配置绑定到一个Java类的字段&#x…...

【算法业务】互联网风控业务中的拒绝推断场景算法应用分享(涉及半监督算法、异常检测、变分自编码、样本权重自适应调整、迁移学习等)

1. 业务目标和任务描述 该项目是很早期的一个工作&#xff0c;属于互联网信贷风控场景&#xff0c;研究并应用信贷中的拒绝推断任务&#xff0c;处理方式也许对于目前的一些业务还有参考意义&#xff0c;因此这里做下分享。拒绝推断是指在信贷业务中&#xff0c;利用已知的接受…...

Windows PowerShell相关笔记

之前我写的一篇&#xff0c;把我的PS&#xff08;power shell&#xff09;该了配置文件 pyqt5vscode 配置坑笔记_vscode使用pyqt command failed-CSDN博客 文件里写的自动加载conda #region conda initialize # !! Contents within this block are managed by conda init !!…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...