当前位置: 首页 > news >正文

wordpress第三方主题下载/seo工资待遇怎么样

wordpress第三方主题下载,seo工资待遇怎么样,做动态效果的网站,网站建设公司公司单块无限大薄板两端的电场 单块无限大的薄板,如果上面带有均匀分布的电荷,就会在薄板的两侧产生电场,电场大小与距离平板的位置无关,方向与平板垂直,如果平板带正电荷,则电场方向向外指向两侧,…

单块无限大薄板两端的电场

单块无限大的薄板,如果上面带有均匀分布的电荷,就会在薄板的两侧产生电场,电场大小与距离平板的位置无关,方向与平板垂直,如果平板带正电荷,则电场方向向外指向两侧,如果平板带负电荷,两侧的电场方向向内指向平板

公式

E = σ 2 ϵ 0 E = \frac{\sigma}{2\epsilon_0} E=2ϵ0σ

其中:

  • E E E 是电场的大小
  • σ \sigma σ 是电荷密度
  • ϵ 0 \epsilon_0 ϵ0 是真空介电常数, 1 4 π ϵ 0 = 9 ∗ 1 0 9 \frac{1}{4\pi\epsilon_0} = 9 * 10^9 4πϵ01=9109

解释

1.对称性

图示

平板产生的电场示意图

因为平板上的电荷是均匀分布的,所以在 p 点处的电场通过两个对称的电荷 d q 1 dq_1 dq1 d q 2 dq_2 dq2 叠加后的电场方向为水平方向,与平板垂直,又因为平板无限大,所以每个位置都可以找到对称的两个部分产生水平的叠加电场,同时因为是均匀分布的电荷,所以在电场两侧产生的电场是一样大的。

2.利用高斯定律计算

图示

薄平板电场

利用高斯定律,如下图所示,选取圆柱形的封闭曲面,曲面的上下两个面与平板的距离相等,中心部分的电荷量为

Q = σ A Q = \sigma A Q=σA

其中

  • Q Q Q 是图中红色部分的电荷量
  • σ \sigma σ 是平板上的电荷密度
  • A A A 是图中红色部分的面积

根据高斯定律,穿过这个封闭曲面的电通量等于封闭曲面中的总的电荷量除以真空介电常数。

E A + E A + 0 = σ A ϵ 0 EA + EA + 0 = \frac{\sigma A}{\epsilon_0} EA+EA+0=ϵ0σA

其中两个 EA 是上下两个平面的电通量,0 是圆柱的曲面上没有电场通过,等号右侧是高斯定律的结论。

整理得

E = σ 2 ϵ 0 E = \frac{\sigma}{2\epsilon_0} E=2ϵ0σ

两个无限大薄板的电场

如下图,两个均匀分布的无线大薄板产生的电场,一个带正电荷,另一个带相同电荷密度的负电荷。

图示

两个平板的电场

公式

E = σ ϵ 0 E = \frac{\sigma}{\epsilon_0} E=ϵ0σ

其中

  • E E E 是电场的大小
  • σ \sigma σ 是电荷密度
  • ϵ 0 \epsilon_0 ϵ0 是真空介电常数, 1 4 π ϵ 0 = 9 ∗ 1 0 9 \frac{1}{4\pi\epsilon_0} = 9 * 10^9 4πϵ01=9109

解释

由于无限大的薄板电场与距离无关,所以带正电荷的薄板产生的电场如图中的红色标识所示,带负电荷的薄板产生的电场如图中的绿色标识所示,经过电场叠加,两个薄板之外的电场大小相等,方向相反,相互抵消,两个薄板之间的电场相互叠加,方向相同,大小相等,所以变为单板的 2 倍,因此得到最终的电场为

E = σ ϵ 0 E = \frac{\sigma}{\epsilon_0} E=ϵ0σ

参考

【麻省理工公开课:电和磁】 https://www.bilibili.com/video/BV1rW41147od/?p=3

【[中英字幕]2018年麻省理工MITx 8.02.1x 电学和磁学-静电学 Electricity and Magnetism-Electrostatics】 https://www.bilibili.com/video/BV16m4y1w7P8/?p=45

相关文章:

无限大薄板的电场

单块无限大薄板两端的电场 单块无限大的薄板,如果上面带有均匀分布的电荷,就会在薄板的两侧产生电场,电场大小与距离平板的位置无关,方向与平板垂直,如果平板带正电荷,则电场方向向外指向两侧,…...

外包干了1个多月,技术明显退步了。。。。。

回望过去,我是一名普通的本科生,2019年有幸通过校园招聘踏入了广州一家软件公司的大门,成为了一名功能测试工程师。岁月如梭,转眼间,我已在这个岗位上默默耕耘了近四年。起初,我对这份工作充满了热情与期待…...

芝法酱学习笔记(0.4)——SpringBoot多模块项目打包,resource分离,lib分离,启动脚本

前言 上期讲了如何在windows平台搭建Java后端的开发环境,并给出了一个简单的hello world级别的多模块代码示例。但上期仅仅是在IDEA中运行,和正式的生产环境完全不同。 本期将讲解,如何配置SpringBoot多模块项目的maven打包,并分…...

进程(一万字学习笔记)

------------------------本文为学习进程记录的学习笔记,如有问题欢迎指正 -------------------------- 目录 1.定义 2.进程的种类 2.进程的内存布局 3.进程控制块(PCB) 4.进程源语 fork() 写时复制 exec() execl函数 wait() #进…...

Docker实践与应用:深度探索与丰富案例

一、引言 在当今的软件开发和运维领域,Docker已经成为了一种不可或缺的技术。它以容器化的方式改变了软件的开发、部署和运行模式,为企业和开发者带来了前所未有的便利和效率提升。本文将深入探讨Docker的实践操作以及丰富的应用举例,带您全面…...

信息安全工程师(21)安全协议

前言 安全协议是建立在密码体制基础上的一种交互通信协议,它运用密码算法和协议逻辑来实现认证、密钥分配、数据机密性、完整性和抗否认性等安全目标。 一、定义与目的 安全协议旨在确保网络环境中信息交换的安全性,通过密码技术和协议逻辑来保护数据的机…...

Starrocks with 嵌套

在某些场景下需要进行 with 嵌套 需要以下进行处理,报如图错误 with abc as (select * from .. ) insert into xxx select * from abc尝试创建物化视图 CREATE MATERIALIZED VIEW IF NOT EXISTS ads_test.xxx_mv REFRESH DEFERRED MANUAL AS with abc as (select…...

ubuntu 安装neo4j

在Ubuntu上安装Neo4j的步骤如下: 1.更新包管理器的索引列表: sudo apt update 2.导入Neo4j的GPG密钥: wget -O - https://debian.neo4j.org/neotechnology.gpg.key | sudo apt-key add - 3.添加Neo4j的仓库到APT源列表: ech…...

云计算课程作业1

作业1 Xmanager连接 rhel连接 作业2 首先确认你的虚拟机设置的是NAT 1-3 然后打开这篇blog,并完成第一步和第二步 因为我们是NAT,所以不需要连接网桥,即跳过第三步,但是这里ping一下测试网络连接 2- 如果到这里你发现提示yum…...

建筑智能,推动智慧社区发展

建筑智能已经成为现代城市建设的热门词汇。它不仅是提高城市建筑现代化水平的必由之路,也是未来城市智能化的重要标志。其中,智能社区是建筑智能化的重要环节之一。 智能社区是指以信息技术为基础,通过信息技术实现社区设施设备网络化、监管…...

conda 虚拟环境安装GDAL

一. 背景 换了新电脑,要重新安装GDAL。从前是下了GDAL的.wheel文件用pip安装,但平时下轮子的网站现在都打不开,比如https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal,不晓得为什么。 后面看了这篇教程解决了问题(h…...

STM32转AT32代码转换

1. 引言 在嵌入式开发中,我们经常会遇到更换单片机芯片的事情,若芯片是同一厂家的还好说,若是不同厂家的则需要重新写,重新调,重新去学习其底层驱动程序,比较费时费力。如:ST32转AT32、ST32转G…...

vue中怎么覆盖 sytle中的样式

好的&#xff0c;下面是一个具体的例子&#xff0c;展示如何在 Vue 组件中覆盖样式。 示例&#xff1a;覆盖组件样式 假设我们有一个组件 MyComponent.vue&#xff0c;其中包含一些样式&#xff1a; <template><div class"my-component"><h1>标…...

php中打印函数

在PHP中&#xff0c;打印函数主要用于输出或显示数据。常用的打印函数包括&#xff1a; 1.echo- 可以输出一个或多个字符串。 echo "Hello, World!"; echo "Hello", " ", "World!"; 2.print - 功能与echo相似&#xff0c;但print只能…...

[单master节点k8s部署]23.构建EFK日志收集平台(二)

部署elasticsearch集群 已经完成的工作&#xff1a;创建存储。首先配置了nfs存储提供商&#xff08;nfs-deployment.yaml&#xff09;&#xff0c;然后通过创建存储类&#xff08;storageclass.yaml&#xff09;来将nfs服务器与存储类绑定&#xff1a; [rootmaster 31efk]# c…...

C#的属性(Property)应用说明(二)

Property的应用说明补充&#xff1a; 一.自定义逻辑&#xff1a; 可以在 get 和 set 访问器中包含自定义的逻辑。 public class Person {private string name;public string Name{get { return name; }set{if (string.IsNullOrWhiteSpace(value))throw new ArgumentException…...

VUE.js笔记

1.介绍vue Vue 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;并提供了一套声明式的、组件化的编程模型&#xff0c;帮助你高效地开发用户界面。无论是简单还是复杂的界面&#xff0c;Vue 都可以胜任。 Vue 应用程序的基本…...

SpringBoot--yml配置文件的时间/大小的单位转换

原文网址&#xff1a;SpringBoot--yml配置文件的时间/大小的单位转换_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍SpringBoot的yml&#xff08;properties&#xff09;配置文件的时间/大小的单位转换。 概述 SpringBoot可以将yml中的配置绑定到一个Java类的字段&#x…...

【算法业务】互联网风控业务中的拒绝推断场景算法应用分享(涉及半监督算法、异常检测、变分自编码、样本权重自适应调整、迁移学习等)

1. 业务目标和任务描述 该项目是很早期的一个工作&#xff0c;属于互联网信贷风控场景&#xff0c;研究并应用信贷中的拒绝推断任务&#xff0c;处理方式也许对于目前的一些业务还有参考意义&#xff0c;因此这里做下分享。拒绝推断是指在信贷业务中&#xff0c;利用已知的接受…...

Windows PowerShell相关笔记

之前我写的一篇&#xff0c;把我的PS&#xff08;power shell&#xff09;该了配置文件 pyqt5vscode 配置坑笔记_vscode使用pyqt command failed-CSDN博客 文件里写的自动加载conda #region conda initialize # !! Contents within this block are managed by conda init !!…...

力扣9.24

2207. 字符串中最多数目的子序列 给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 pattern &#xff0c;两者都只包含小写英文字母。 你可以在 text 中任意位置插入 一个 字符&#xff0c;这个插入的字符必须是 pattern[0] 或者 pattern[1] 。…...

NRF21540—低功耗蓝牙,蓝牙mesh、Thread和Zigbee和2.4 GHz私有协议范围扩展射频前端模块

nRF21540是一款射频前端模块(FEM)&#xff0c;可用于改善短距离无线产品的传输范围和连接鲁棒性。作为一款辅助性设备&#xff0c;nRF21540是一种“即插即用型”的无线传输范围扩展器&#xff0c;可与nRF52和nRF53系列的高级多协议无线SoC搭配使用&#xff0c;所需的外部器件数…...

2024最新Linux Socket编程

我们深谙信息交流的价值&#xff0c;那网络中进程之间如何通信&#xff0c;如我们每天打开浏览器浏览网页时&#xff0c;浏览器的进程怎么与web服务器通信的&#xff1f;当你用QQ聊天时&#xff0c;QQ进程怎么与服务器或你好友所在的QQ进程通信&#xff1f;这些都得靠socket&am…...

Linux下的驱动开发二

一、IO模型 I/O 模型在操作系统中用于处理应用程序与设备驱动之间的数据传输。I/O 通信模型的核心是解决程序与设备之间如何高效、合理地进行数据通信。不同的模型通过阻塞、非阻塞、同步、异步的方式来控制数据流和处理 I/O 请求。 注&#xff1a;在驱动开发中可以定义一个全…...

【JAVA报错已解决】 Java.lang.ArrayIndexOutOfBoundsException

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 专栏介绍 在软件开发和日常使用中&#xff0c;BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…...

2024 CSP 游记

J 组 初赛 早上也是五点钟就起来 打游戏 了。 考点在八达小学&#xff0c;除了感觉小、破、旧就没有其他感觉&#xff08; 我妈也是成功的给我提前一小时到达考场。 拿到试卷后&#xff0c;瞄一眼&#xff0c;咋这么简单&#xff0c;和一本通的模拟卷难度一样&#xff1f;…...

双十一有什么推荐好物?,这些你不能错过的宝藏好物推荐

随着双十一的临近&#xff0c;这场盛大的购物狂欢蓄势待发&#xff01;为了让大家不在琳琅满目的商品中徘徊&#xff0c;琪琪用心归纳了一份购物清单&#xff0c;分享那些我亲自使用过&#xff0c;觉得必须拥有的商品。 这些商品不仅价格公道&#xff0c;而且质量上乘&#xf…...

NSSCTF [HUBUCTF 2022 新生赛]simple_RE(变种base64编码)

文件无壳 拖入IDA中 shiftF12查看可疑字符串 发现两串字符串 一看这两个等于号就猜测是base64编码 进入主函数看看 这段代码是一个简单的 C 语言程序&#xff0c;主要功能是接受用户输入的字符串作为“flag”&#xff0c;然后通过对输入的字符串进行一些处理和比较来验证是否输…...

clickhouse使用extract提取分号之前,之后,中间的内容

Area&#xff1a;‘安徽;宣城;宣州’&#xff0c;要提取分号之前&#xff0c;两个分号之前&#xff0c;最后一个分号之后的内容作为省市区 这是最后得到的正确的结果&#xff0c;感谢chatgpt 刚开始本来想使用splitByString -- 宣城 select splitByString(;,安徽;宣城;宣州)[2…...

Unity3D Compute Shader同步详解

前言 在Unity3D中&#xff0c;Compute Shader是一种强大的工具&#xff0c;它利用GPU的并行处理能力来执行复杂的计算任务&#xff0c;从而减轻CPU的负担&#xff0c;提高游戏的性能和效率。然而&#xff0c;由于GPU的工作方式&#xff0c;对共享资源的访问需要特别注意同步问…...