开源图像降噪算法与项目介绍【持续更新】
Intel® Open Image Denoise
- 介绍:Intel® Open Image Denoise(OIDN)是一个开源库,它提供了一系列高性能、高质量的去噪滤镜,专门用于光线追踪渲染的图像。这个库是Intel® Rendering Toolkit的一部分,并且是在宽松的Apache 2.0许可下发布的。OIDN的核心是一系列基于深度学习的去噪滤镜,这些滤镜能够处理从1 spp(样本每像素)到几乎完全收敛的广泛样本范围,使其适用于预览和最终帧渲染。除了仅使用嘈杂的颜色(beauty)缓冲区进行去噪外,还可以选择性地使用辅助特征缓冲区(例如反照率、法线贴图)以尽可能保留细节。
- GitHub星:1.8k
- GitHub地址:https://github.com/RenderKit/oidn

BSVD
- 介绍:BSVD(Bidirectional Streaming Video Denoising)是一种实时流视频去噪框架,由香港科技大学提出。它的核心是一个新颖的双向缓冲块(Bidirectional Buffer Block),能够利用过去和未来的帧来预测当前帧,实现高效的实时去噪。BSVD框架不仅能够处理视频流中的噪声,还能够保持较高的图像质量,同时实现快速的推理速度。BSVD的网络结构相对简单,由两个UNet网络级联而成,称为W-Net。在训练阶段,网络使用时间移位模块(Temporal Shift Module, TSM),而在推理时则使用双向缓冲块(Bidirectional Buffer Block, BBB)。这种设计使得BSVD在推理时能够以流水线的形式进行,从而实现实时处理。
- GitHub星:69
- GitHub地址:https://github.com/ChenyangQiQi/BSVD

Papers with Code - Image Denoising
- 介绍:“Papers with Code - Image Denoising” 是一个汇集了图像去噪领域的研究论文、代码实现、基准测试和数据集的资源平台。该平台提供了多种图像去噪技术的排行榜。
- 官网:https://paperswithcode.com/task/image-denoising

Zero-Shot Noise2Noise
- 介绍:Zero-Shot Noise2Noise(ZS-N2N)是一种无需任何训练数据或噪声分布知识的高效图像去噪方法。这种方法受到Noise2Noise(N2N)和Neighbor2Neighbor(NB2NB)的启发,特别适合于逐像素独立噪声的去噪。ZS-N2N通过使用单个噪声图像生成一对噪声图像,并用这对图像训练一个简单的两层神经网络,从而实现去噪。这种方法在人工、真实世界相机和显微镜噪声的实验中表现出色,常常以更低的成本超越现有的无数据集方法,适合数据稀缺且计算资源有限的情况。
- 论文:Zero-Shot Noise2Noise: Efficient Image Denoising without any Data
- 网址:https://colab.research.google.com/drive/1i82nyizTdszyHkaHBuKPbWnTzao8HF9b?usp=sharing#scrollTo=rOnvECU38H_R
DIP (Deep Image Prior)
- 介绍:Deep Image Prior(DIP)是一种利用深度学习进行图像恢复的技术,它通过使用随机初始化的深度卷积网络来处理图像去噪、超分辨率和修复等逆问题。DIP的核心思想是,即使在没有学习之前,生成器网络的结构也能够捕获大量的低级图像统计信息。这意味着,一个随机初始化的神经网络本身就可以作为一个手工先验,用于解决标准的逆问题,如去噪、超分辨率和图像修复等。
- 官网:https://dmitryulyanov.github.io/deep_image_prior
- GitHub星:7.8k
- GitHub地址:https://github.com/DmitryUlyanov/deep-image-prior

reproducible-image-denoising-state-of-the-art
- 介绍:收集各类图像去噪的算法GitHub项目,里面收集了包括传统的、深度方向的图像降噪各类算法。
- GitHub星:2.4k
- GitHub地址:https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

DnCNN
- 介绍:DnCNN(Deep Convolutional Neural Network for Image Denoising)是一种深度学习方法,用于图像去噪。它通过学习噪声图像的残差来实现去噪,即使用带噪声图像减去估计的噪声来得到干净的图像。DnCNN 网络通常包含一个卷积层、多个卷积层与批归一化和ReLU激活函数的组合,以及最后一个卷积层来输出噪声图。DnCNN 已被证明在多种噪声水平下都具有良好的去噪效果。
- GitHub星:1.4k
- GitHub地址:https://github.com/cszn/DnCNN

MAXIM
- 介绍:MAXIM: Multi-Axis MLP for Image Processing 是一个在 CVPR 2022 上被提名为最佳论文的图像处理模型。这个模型由谷歌研究团队提出,它是基于多层感知器(MLP)构建的,用于处理包括图像去噪、去模糊、去雨、去雾和增强等多种图像处理任务。
- GitHub星:999
- GitHub地址:https://github.com/google-research/maxim

相关文章:
开源图像降噪算法与项目介绍【持续更新】
Intel Open Image Denoise 介绍:Intel Open Image Denoise(OIDN)是一个开源库,它提供了一系列高性能、高质量的去噪滤镜,专门用于光线追踪渲染的图像。这个库是Intel Rendering Toolkit的一部分,并且是在宽…...
RealSense、ZED 和奥比中光Astra几款主流相机介绍及应用
以下是英特尔 RealSense、Stereolabs ZED 和奥比中光Astra几款相机的详细对比,包括参数、性能以及二次开发等支持,附带代码示例。 详细信息对比和二次开发示例 1. 英特尔 RealSense (例如 D435/D455) 深度技术:立体视觉 红外投影分辨率&a…...
启动 Ntopng 服务前需先启动 redis 服务及 Ntopng 常用参数介绍
启动Ntopng服务之前需要先启动redis服务,因为Ntopng服务依赖于redis服务的键值存储。 服务重启 服务启动 Ntopng常用参数: -d 将 Ntopng 进程放入后台执行。默认情况下,Ntop 在前台运行。 -u 指定启动Ntopng执行的用户,默认为…...
vector的模拟实现以及oj题(2)
前言 上篇博客介绍了大部分vector的接口,其中包括begin()、end()、const begin()、 const end()、size、capacity、reserve、empty、push_back、pop_back、insert、operator[],这篇博客将介绍剩下的部分接口,以及一些oj题解法和思路。 vect…...
数据技术进化史:从数据仓库到数据中台再到数据飞轮的旅程
随着大数据时代的到来,数据已经成为企业的核心资产之一。在过去几十年间,数据技术也随之不断演进,从早期的数据仓库到近年来热门的数据中台,再到正在快速发展的数据飞轮概念,每一步都是技术革新的体现。 一、数据仓库&…...
JAVA JDK华为云镜像下载,速度很快
直达下载地址 https://repo.huaweicloud.com/java/jdk/ https://repo.huaweicloud.com/java/jdk/欢迎各位收藏享用!!!...
【RKNN系列】官方函数:querystring
querystring 函数 功能 查询获取当前芯片平台RGA硬件版本与功能支持信息,以字符串的形式返回。 语法 std::string querystring(int query_type);参数 query_type: 要查询的 RGA 信息类型(整数) 描述 这个函数用于获取特定类型的 RGA 信…...
Stable Diffusion零基础学习
Stable Diffusion学习笔记TOP14 _插件篇之ControlNet功能篇 ControlNet目前支持的10多种预处理器,根据数据检测种类可分为两种类型: 1、功能型:拥有着不同的能力 2、构图型:控制着SD扩散图形的构图规则 部分未编写预处理器的功…...
C#基于SkiaSharp实现印章管理(9)
将印章设计模块设计的印章保存为图片并集中存放在指定文件夹内。新建印章应用项目,主要实现对图片及PDF文件加盖印章功能。本文实现给图片加盖印章功能。 给图片加盖印章的逻辑比较简单,就是将印章图片绘制到图片指定位置,使用SKControl控…...
研究生如何利用ChatGPT帮助开展日常科研工作?
小白可做!全自动AI影视解说一键成片剪辑工具https://docs.qq.com/doc/DYnl6d0FLdHp0V2ll 作为当代研究生,科研工作三部曲----读文献、开组会、数据分析。无论哪一个,都令研究生们倍感头疼,简直就是梦魇。每当看到导师发来的消息&a…...
汽车零部件开发流程关键阶段
目录 1、定点阶段 1.1、定点前的准备工作 1.2、定点决策过程 1.3、定点后的工作交接 2、A样阶段:设计验证与基本功能实现 2.1、样件制作:从设计图纸到实物转化 2.2、功能测试:初步验证与性能评估 2.3、评估与优化:A样阶段…...
Magnific推V2图像生成服务 可直出4K图像
人工智能 - Ai工具集 - 集合全球ai人工智能软件的工具箱网站 近日,AI图像处理领域再迎重大突破,Magnific推出的V2图像生成服务引领行业潮流。此次升级,不仅使Magnific从高端软件跻身为顶级AI图像生成器,更彰显了其在技术创新及用…...
E9OA解决文档附件没有关联文档正文问题
业务背景: OA通知流程已经提交后在审批中发现漏上传了文档附件。临时放开审批结点文档附件编辑,请审批结点领导将附件上传后再审批。最终在流程中查看可以看到正文和附件,但是在通知文档正文中没有关联文档附件,导致大多数人员在通…...
EasyExcel日常使用总结
文章目录 概要引入依赖常用操作方法折叠或隐藏列折叠或隐藏行单元格样式单行表头设置多行表头设置多个sheet写入自动列宽 概要 EasyExcel日常使用总结。 引入依赖 引入依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</a…...
人只活一次,活出一道光吧
人只活一次, 你怎么舍得让自己的短暂的一生是丑陋的, 你怎么舍得让自己短暂的一生, 只是在往下坠落, 即便是坠落, 也应该具有落日般的华丽吧, 你会漫漫的活成一束光, 谁若接近你, 就是接近光, 【人人都想向上,人人都想老而不衰,但现实是当你想活成一道光…...
sqli-labs:1~16(sql注入点稳定判断语句、全回显半回显报错回显无回显利用思路、sql注入tips)
怎么验证sql注入的存在呢? 首先,双引号单引号注入,看看有没有报错,或者与正常参数的区别,有报错说明大概率可以注入成功,但是,很可能单引号和双引号测试可能没有报错回显,或者与正常…...
springboot农产品销售信息微信小程序—计算机毕业设计源码35557
摘 要 在信息飞速发展的今天,网络已成为人们重要的信息交流平台。每天都有大量的农产品需要通过网络发布,为此,本人开发了一个基于springboot农产品销售信息微信小程序。 对于本农产品销售信息系统的设计来说,它主要是采用后台采…...
HuggingChat macOS 版现已发布
Hugging Face 的开源聊天应用程序 Hugging Chat,现已推出适用于 macOS 的版本。 主要特点 Hugging Chat macOS 版本具有以下亮点: 强大的模型支持: 用户可以一键访问多个顶尖的开源大语言模型,包括 Qwen 2.5 72B、Command R、Phi 3.5、Mistral 12B 等等&…...
C#:动态为Object对象添加新属性的方法
在C#中,object 类型本身是一个基础类型,它不支持直接添加属性,因为 object 并不具备定义属性的能力(它不支持任何接口或基类中的属性,除非通过类型转换)。然而,有几种方法可以在运行时模拟给对象…...
我常用的几个Python金融数据接口库,非常好用~
在金融分析和量化投资领域,Python已成为最受欢迎的编程语言之一。这主要归功于其丰富的库和框架,它们提供了处理和分析金融数据所需的工具,而且还有大量免费实时的金融股票数据供你分析研究。 以下是六个最常用的Python金融数据接口库&#x…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
SQL注入篇-sqlmap的配置和使用
在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap,但是由于很多朋友看不了解命令行格式,所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习,链接:https://wwhc.lanzoue.com/ifJY32ybh6vc…...
基于小程序老人监护管理系统源码数据库文档
摘 要 近年来,随着我国人口老龄化问题日益严重,独居和居住养老机构的的老年人数量越来越多。而随着老年人数量的逐步增长,随之而来的是日益突出的老年人问题,尤其是老年人的健康问题,尤其是老年人产生健康问题后&…...
