当前位置: 首页 > news >正文

BERT训练之数据集处理(代码实现)

目录

1读取文件数据

 2.生成下一句预测任务的数据

 3.预测下一个句子

 4.生成遮蔽语言模型任务的数据

 5.从词元中得到遮掩的数据

 6.将文本转化为预训练数据集

7.封装函数类

8.调用


import os
import random
import torch
import dltools

1读取文件数据

def _read_wiki(data_dir):#拼接文件路径file_name = os.path.join(data_dir, 'wiki.train.tokens')#将输入参数中的两个名字拼接成一个完整的文件路径。with open(file_name, 'r', encoding='utf-8') as f:#打开文件,逐行读取内容,并将每行作为一个元素添加到列表中。lines = f.readlines()#大写字母转换为小写字母,获取分句之后的段落列表paragraphs = [line.strip().lower().split('.') for line in lines if len(line.split('.')) >= 2]random.shuffle(paragraphs)  #大陆那段落列表中的元素return paragraphs_read_wiki('./wikitext-2/')  #输出过长,不展示

 2.生成下一句预测任务的数据

def _get_next_sentence(sentence, next_sentence, paragraphs):if random.random() < 0.5: #若50%的概率发生时is_next = Trueelse:#否则,next_sentence就不是下一个句子,是随机抽取的其他句子#paragraphs是三重列表的嵌套#从所有列表中随机抽取一个段落,从这个段落中又随机抽取一个句子next_sentence = random.choice(random.choice(paragraphs))is_next =Falsereturn sentence, next_sentence, is_next     

 3.预测下一个句子

def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):nsp_data_from_paragraph = []  #创建空列表,存放下一个句子的数据for i in range(len(paragraph) - 1):   #len(paragraph) - 1是因为索引是从0开始的,左闭右开,输出段落中的每一个句子的索引#调用函数,获取用于预测下一个句子任务的数据tokens_a, tokens_b , is_next = _get_next_sentence(paragraph[i], paragraph[i+1], paragraphs)#预测输入的两个句子结构是  -->    <cls> tokens_a  <sep> tokens_b <sep># +3表示考虑 1个<cls>  +2个<sep>if len(tokens_a) + len(tokens_b) + 3 > max_len:continue   #这种情况超出了序列的最大长度,不需要#将文本数据分割成词元(tokens)和句子分段(segments)。#这个过程通常涉及到一系列的预处理步骤,如去除标点符号、转换为小写、数字处理等,以确保输入数据的标准化和一致性‌tokens, segments = dltools.get_tokens_and_segments(tokens_a, tokens_b)nsp_data_from_paragraph.append((tokens, segments, is_next))  #三个数据以元祖的形式存放到列表中return nsp_data_from_paragraph

 4.生成遮蔽语言模型任务的数据

#Mask Language Modle
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab):"""tokens:传入的词元candidate_pred_positions:等待预测的词元位置索引编号(若传入句子的序列长度为100,那么它就是0-99)num_mlm_preds:预测遮掩的数量vocab:整体词汇表"""#为遮蔽语言模型的输入创建新的词元副本, 其中输入可能包含替换的<mask>或随机词元mlm_input_tokens = [token for token in tokens]  #复制词元数据,后期的替换不修改原数据pred_positions_and_labels = []  #用于存放预测的词元位置和目标标签#打乱顺序  等待预测的词元位置索引编号random.shuffle(candidate_pred_positions)for mlm_pred_position in candidate_pred_positions:  #遍历#判断存放预测词元的个数是否已经超过了需要预测的数量if len(pred_positions_and_labels) >= num_mlm_preds:break  #若预测数量够了,就不预测了,直接退出当前for循环,  continue是退出当前if判断#否则,接着预测mask_token = None  #初始化变量:被15%抽中需要被替换的词元   为空#80%的概率, 将抽取的15%的词元,替换成<mask>词元if random.random() < 0.8:msaked_token = '<mask>'else:  #否则,将剩下的其中10%的词元保持不变      从剩下的20%中抽取50%来表示if random.random() < 0.5:mask_token = tokens[mlm_pred_position]else:  #将剩下的其中10%的词元,用随机词替换msaked_token = random.choice(vocab.idx_to_token)#将获取到的msaked_token按索引赋值替换原词元mlm_input_tokens[mlm_pred_position] = mask_token#mlm_pred_position需要被预测的词元位置索引,  tokens[mlm_pred_position]被遮掩预测的词元的标签(真实值是什么)pred_positions_and_labels.append((mlm_pred_position, tokens[mlm_pred_position]))return mlm_input_tokens, pred_positions_and_labels

 5.从词元中得到遮掩的数据

# 
def _get_mlm_data_from_tokens(tokens, vocab):candidate_pred_positions = []# tokens是一个字符串列表for i, token in enumerate(tokens):# 在遮蔽语言模型任务中不会预测特殊词元if token in ['<cls>', '<sep>']:continuecandidate_pred_positions.append(i)# 遮蔽语言模型任务中预测15%的随机词元num_mlm_preds = max(1, round(len(tokens) * 0.15))mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab)pred_positions_and_labels = sorted(pred_positions_and_labels,key=lambda x: x[0])pred_positions = [v[0] for v in pred_positions_and_labels]mlm_pred_labels = [v[1] for v in pred_positions_and_labels]return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]

 6.将文本转化为预训练数据集

def _pad_bert_inputs(examples, max_len, vocab):#词源需要预测的最大数量max_num_mlm_preds = round(max_len * 0.15)all_tokens_ids, all_segments, valid_lens = [], [], []all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []nsp_labels = []for (token_ids, pred_positions, mlm_pred_label_ids, segments, is_next) in examples:#对原有的tokens(每句话有长有短,补充《pad》使长度一致)all_tokens_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (max_len - len(token_ids)), dtype=torch.long))all_segments.append(torch.tensor(segments + [0] * (max_len - len(segments)), dtype=torch.long))#valid_lens不包括<pad>计数valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))all_pred_positions.append(torch.tensor(pred_positions + [0] * (max_num_mlm_preds - len(pred_positions)), dtype=torch.long))#填充词元的预测将通过乘以0权重在损失中过滤掉all_mlm_weights.append(torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (max_num_mlm_preds - len(pred_positions)), dtype=torch.float32))all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))nsp_labels.append(torch.tensor(is_next, dtype=torch.long))return (all_tokens_ids, all_segments, valid_lens, all_pred_positions, all_mlm_weights, all_mlm_labels, nsp_labels)

7.封装函数类

class WikiTextDataset(torch.utils.data.Dataset):def __init__(self, paragraphs, max_len):#输入paragraphs[i]是代表段落的句子字符串列表#输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表paragraphs = [dltools.tokenize(paragraph, token='word') for paragraph in paragraphs]#获取句子的词元列表sentences = [sentence for paragraph in paragraphs for sentence in paragraph]self.vocab = dltools.Vocab(sentences, min_freq=5, reserved_tokens=['<pad>', '<mask>', '<cls>', '<sep>'])#获取下一句子预测任务的数据examples = []for paragraph in paragraphs:examples.extend(_get_nsp_data_from_paragraph(paragraph, paragraphs, self.vocab, max_len))#获取遮蔽语言模型任务的数据examples = [(_get_mlm_data_from_tokens(tokens, self.vocab) + (segments, is_next)) for tokens, segments, is_next in examples]#填充输入(self.all_token_ids, self.all_segments, self.valid_lens, self.all_pred_positions, self.all_mlm_weights, self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(examples, max_len, self.vocab)def __getitem__(self, idx):return (self.all_token_ids[idx], self.all_segments[idx],self.valid_lens[idx], self.all_pred_positions[idx],self.all_mlm_weights[idx], self.all_mlm_labels[idx],self.nsp_labels[idx])def __len__(self):return len(self.all_token_ids)

8.调用

def load_data_wiki(batch_size, max_len):"""加载WikiText-2数据集"""num_workers = dltools.get_dataloader_workers()  #快速获取或设置最佳的工作线程数data_dir = './wikitext-2/'paragraphs = _read_wiki(data_dir)train_set = WikiTextDataset(paragraphs, max_len)train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers)return train_iter, train_set.vocab
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,mlm_Y, nsp_y) in train_iter:print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,nsp_y.shape)break
torch.Size([512, 64]) torch.Size([512, 64]) torch.Size([512]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512])
len(vocab)

 20228

 

相关文章:

BERT训练之数据集处理(代码实现)

目录 1读取文件数据 2.生成下一句预测任务的数据 3.预测下一个句子 4.生成遮蔽语言模型任务的数据 5.从词元中得到遮掩的数据 6.将文本转化为预训练数据集 7.封装函数类 8.调用 import os import random import torch import dltools 1读取文件数据 def _read_wiki(data_d…...

一款辅助渗透测试过程,让渗透测试报告一键生成

《网安面试指南》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484339&idx1&sn356300f169de74e7a778b04bfbbbd0ab&chksmc0e47aeff793f3f9a5f7abcfa57695e8944e52bca2de2c7a3eb1aecb3c1e6b9cb6abe509d51f&scene21#wechat_redirect 《Java代码审…...

力扣最热一百题——颜色分类

目录 题目链接&#xff1a;75. 颜色分类 - 力扣&#xff08;LeetCode&#xff09; 题目描述 示例 提示&#xff1a; 解法一&#xff1a;不要脸用sort Java写法&#xff1a; 运行时间 解法二&#xff1a;O1指针 Java写法&#xff1a; 重点 运行时间 C写法&#xff1a;…...

2024年工业制造企业CRM研究报告:需求清单、市场格局、案例分析

我国是世界上产业体系最完备的国家&#xff0c;拥有全球规模最大、门类最齐全的生产制造体系&#xff0c;在500种主要工业产品中&#xff0c;有四成以上产品产量位居全球第一。2023年制造业增加值达33万亿元&#xff0c;占世界的比重稳定在30%左右&#xff0c;我国制造业增加值…...

Spring MVC参数接收 总结

1. 简介 Spring MVC可以简化从前端接收参数的步骤。 2. Param传参 通过设定函数入参和添加标记来简化接受&#xff1a; //参数接收 RequestMapping("product") ResponseBody //接受/product?productgoods&id123 //1.名称必须相同&#xff0c;2.不传值不会不…...

Docekrfile和docker compose编写指南及注意事项

Dockerfile 基础语法 我们通过编写dockerfile,将每一层要做的事情使用语法固定下来&#xff0c;之后运行指令就可以通过docker来制作自己的镜像了。 构建镜像的指令&#xff1a;docker build /path -t imageName:tag 注意&#xff0c;docker build后的path必须是dockerfile…...

VITS源码解读6-训练推理

1. train.py 1.1 大体流程 执行main函数&#xff0c;调用多线程和run函数执行run函数&#xff0c;加载日志、数据集、模型、模型优化器for循环迭代数据batch&#xff0c;每次执行train_and_evaluate函数&#xff0c;训练模型 这里需要注意&#xff0c;源码中加载数据集用的分…...

力扣 简单 104.二叉树的最大深度

文章目录 题目介绍解法 题目介绍 解法 如果知道了左子树和右子树的最大深度 l 和 r&#xff0c;那么该二叉树的最大深度即为max(l,r)1&#xff0c;而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用递归的方法来计算二叉树的最大深度。具体而言&#xff…...

单片机长短按简单实现

单片机长短按简单实现 目录 单片机长短按简单实现1 原理2 示例代码2.1 按键实现 3 测试log4 其他实现方式 1 原理 按键检测和处理的步骤如下&#xff1a; 1&#xff1a;定时扫描按键&#xff08;使用定时器定时扫描&#xff0c;也可以用软件延时或者系统心跳之类的方式&#…...

如何用好通义灵码企业知识库问答能力?

通义灵码企业版&#xff1a;通义灵码企业标准版快速入门_智能编码助手_AI编程_智能编码助手通义灵码(Lingma)-阿里云帮助中心 通义灵码提供了基于企业知识库的问答检索增强的能力&#xff0c;在开发者使用通义灵码 IDE 插件时&#xff0c;可以结合企业知识库内上传的文档、文件…...

C语言自定义类型:联合体

目录 前言一、联合体1.1 联合体类型的声明1.2 联合体的特点1.3 相同成员的结构体和联合体对比1.4 联合体大小的计算1.5 联合体的⼀个练习 总结 前言 前面我讲到C语言中的自定义结构——结构体&#xff0c;其实C语言中的自定义结构不只有结构体&#xff0c;还有枚举和联合体&am…...

【JavaEE】——线程池大总结

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯&#xff0c; 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01;希望本文内容能够帮助到你&#xff01; 目录 引入&#xff1a;问题引入 一&#xff1a;解决方案 1&#xff1a;方案一——协程/纤程 &#xff08;1…...

编程中为什么使用0和1表示状态

前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 我们看到很多项目都使用0和1表示某些状态信息&#xff0c;具体含义取决于上下文。以下是一些常见的用法&#xff1a; 布尔值&#x…...

C++入门基础知识90(实例)——实例15【求两数的最大公约数】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于求两数的最大公约数的相关内容&#xff…...

自动化办公-Python-os模块的使用

os.path 模块的使用 在指定文件路径时&#xff0c;由于操作系统的差异&#xff0c;直接使用硬编码的路径可能会导致程序在不同平台上无法正常运行。为了解决这个问题&#xff0c;Python 提供了 os.path 模块&#xff0c;它包含了一系列用于路径操作的函数&#xff0c;可以帮助您…...

无人机之数据处理技术篇

一、数据采集 无人机通过搭载的各种传感器和设备&#xff0c;如GPS、加速度计、陀螺仪、磁力计、激光雷达(LiDAR)、高光谱相机(Hyperspectral)、多光谱相机(Multispectral)以及普通相机等&#xff0c;实时采集飞行过程中的各种数据。这些数据包括无人机的位置、速度、高度、姿态…...

828华为云征文|部署多功能集成的协作知识库 AFFiNE

828华为云征文&#xff5c;部署多功能集成的协作知识库 AFFiNE 一、Flexus云服务器X实例介绍二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置2.4 Docker 环境搭建 三、Flexus云服务器X实例部署 AFFiNE3.1 AFFiNE 介绍3.2 AFFiNE 部署3.3 AFFiNE 使用 四、…...

c++(AVL树及其实现)

一、AVL树的概念 AVL树是最先发明的自平衡⼆叉查找树&#xff0c;AVL是⼀颗空树&#xff0c;或者具备下列性质的⼆叉搜索树&#xff1a;它的 左右子树都是AV树&#xff0c;且左右子树的高度差的绝对值不超过1。AVL树是⼀颗高度平衡搜索⼆叉树&#xff0c; 通过控制高度差去控…...

Cesium GIS项目关于湖泊识别与提取的实现

1. 引言 项目背景 随着遥感技术的发展,地理信息系统的应用越来越广泛。本项目旨在开发一个基于Cesium的地理信息系统,利用深度学习技术自动识别并显示湖泊的位置。 目标与意义 通过自动化处理大量遥感影像数据,提高湖泊监测的效率和准确性,为水资源管理和环境保护提供支…...

两个圆形 一个z里面一个z外面,z里面的大,颜色不同 html

两个圆形 一个z里面一个z外面&#xff0c;z里面的大&#xff0c;颜色不同 html <!DOCTYPE html> <html> <head> <style> .outer-circle {width: 150px;height: 150px;border-radius: 50%;background-color: #ff9999; /* 外圆的颜色 */position: relat…...

【Power Query】M函数-table

M函数-table 添加列&#xff08;AddColumn&#xff09;&#xff1a;条件语句&#xff08;If..then..else&#xff09;&#xff1a;容错语句&#xff08;try..otherwise&#xff09;&#xff1a; 排序&#xff08;ReorderColumns&#xff09;&#xff1a;筛选&#xff08;Selec…...

uni-app 封装websocket 心跳检测,开箱即用

class websocketUtils {constructor(url, needbeat, options {}) {this.needbeat needbeat;this.url url;this.options options;this.ws null;this.heartbeatInterval options.heartbeatInterval || 10000; // 心跳间隔&#xff0c;默认为10秒 this.reconnectInterval …...

ASP.NET Core8.0学习笔记(十九)——EF Core DbSet

一、DbSet概述 1.DbSet提供了通过DbContext对表进行查询操作的路径。DbSet对应的属性名称将默认映射为实体T的表名。 2.使用DbSet<T>进行查询的方法&#xff1a; (1)直接在DbContext中创建对应的DbSet<T>属性 (2)使用DbSet DbContext.Set<T>方法操作数据表。…...

Android Camera 预览角度和拍照保存图片角度相关

–基于Android R(11) 关于Camera Camera Framework 的架构 Android Camera Framework 是一个分层架构&#xff0c;由以下组件组成&#xff1a; HAL&#xff08;硬件抽象层&#xff09;: HAL 抽象底层相机硬件,提供与不同设备相机进行交互的标准接口.CameraService : Camera…...

新手如何使用Qt——方法使用

前言 那么这篇文章其实是我在使用Qt的过程当中呢&#xff0c;我发现在Qt使用过程中&#xff0c;在我理解信号和槽这个概念后&#xff0c;在编写槽函数数的时候&#xff0c;发现了自身存在的问题&#xff0c;我的难点是在于当我在编写槽函数的时候&#xff0c;我知道这个槽函数是…...

友元运算符重载函数

目录 1.定义友元运算符重载函数的语法形式 2.双目运算符重载 3.单目运算符重载 1.定义友元运算符重载函数的语法形式 &#xff08;1&#xff09;在类的内部&#xff0c;定义友元运算符重载函数的格式如下&#xff1a; friend 函数类型 operator 运算符&#xff08;形参表&a…...

从0开始实现es6 promise类

主要由基础实现和静态类的实现两部分组成。 1 基础实现&#xff08;不含静态类&#xff09; 1.1 使用类实现完成构造函数 实现代码如下&#xff0c;构造函数传入一个回调函数&#xff0c;定义resolve和reject函数&#xff0c;将两个函数作为参数执行回调函数。 // 1. 使用类实…...

XML 编码

XML 编码 XML&#xff08;可扩展标记语言&#xff09;是一种用于存储和传输数据的标记语言。它由万维网联盟&#xff08;W3C&#xff09;开发&#xff0c;旨在提供一种标准的方式来结构化、存储和传输数据。XML的设计目标是既易于人类阅读&#xff0c;也易于机器解析。 XML的…...

AI周报(9.22-9.28)

AI应用-Siipet宠物沟通师 Siipet是一款由SiiPet公司推出的创新宠物行为分析相机&#xff0c;旨在通过尖端技术加深宠物与主人之间的情感联系。这款相机利用先进的AI算法&#xff0c;能够自动识别和分析家中宠物的行为&#xff0c;并提供定制化的护理建议。 SiiPet相机的核心功…...

基于RealSense D435相机实现手部姿态重定向

基于Intel RealSense D435相机和MediaPipe的手部姿态检测&#xff0c;进一步简单实现手部姿态与机器人末端的重定向&#xff0c;获取手部的6D坐标&#xff08;包括位置和姿态&#xff09;。 假设已经按照【基于 RealSenseD435i相机实现手部姿态检测】配置好所需的库和环境&…...