当前位置: 首页 > news >正文

关于大模型的10个思考

9月28日,第四届“青年科学家50²论坛”在南方科技大学举行,美国国家工程院外籍院士沈向洋做了《通用人工智能时代,我们应该怎样思考大模型》的主题演讲,并给出了他对大模型的10个思考。

以下是他10个思考的具体内容:

1、算力是门槛:大模型对算力的要求,过去10年非常巨大。今天要做人工智能大模型,讲卡伤感情、没卡没感情。

2、关于数据的数据:如果有GPT-5出来,可能会上到200T的数据量。但互联网上没有那么多好的数据,清洗完以后,可能20T就差不多到顶了,所以未来要做GPT-5,除了现有的数据,还要更多的多模态数据,甚至人工合成的数据。

3、大模型的下一章:有很多多模态的科研工作要做,我相信一个非常重要的方向是多模态的理解和生成的统一。

4、人工智能的范式转移:o1出来后,从原来的GPT的预训练思路,变成了今天的自主学习的道路,就是在推理这一步强化学习,不断地自我学习的过程。整个过程非常像人类思考问题、分析问题,也需要非常多的算力才行。

5、大模型横扫千行百业:在中国的大模型建设浪潮当中,越来越多的是行业大模型。这个趋势肯定是这样的,未来通用大模型的占比会越来越低。

6、AI Agent,从愿景到落地:超级应用一开始就在那里,这个超级应用就是一个超级助理,就是一个超级Agent。

7、开源vs闭源:我认为Meta的Llama并不是传统的开源,它只是开源了一个模型,并没有给你原代码和数据,所以我们在用开源系统的时候,也要下定决心真正理解大模型的系统闭源的工作。

8、重视AI的治理:人工智能对千行百业、对整个社会的冲击非常大,要大家共同来面对。

9、重新思考人机关系:真正把人机交互搞清楚,才能成为每一代高科技企业真正有商业价值的领导者。现在讲OpenAI加上微软就代表这个时代还太早,他们是领先了,但是未来还有很多想象的空间。

10、智能的本质:虽然大模型已经给大家带来很多的震惊,但是我们对大模型、深度学习是没有理论的。关于人工智能的涌现,大家只是讲讲,并没有讲清楚。

“青年科学家50²论坛”为新基石科学基金会的学术年会,由南方科技大学、腾讯可持续社会价值事业部、新基石科学基金会联合主办。新基石科学基金会由腾讯在10年内出资100亿元人民币设立、独立运营,是目前国内最大的公益性科学基金会之一,它的设立和运行,是腾讯践行科技向善、长期主义投入科学资助的具体行动。

“青年科学家50²论坛”是“科学探索奖”获奖人的跨学科学术交流平台。“科学探索奖”于2018年设立,是一项由新基石科学基金会出资、科学家主导的公益奖项,是目前国内金额最高的青年科技人才资助项目之一。每位获奖人在受资助的5年期间,至少在论坛上分享一次自己的 BIG IDEA 和最新探索。“50²”寓意“科学探索奖”每年评选出的50位青年科学家,将对未来50年的科学技术突破产生重大影响。

今天有了这样一些了不起的技术,甚至有了这样一些了不起的产品,我们在国内也都非常努力,也在做大模型,从技术到模型,到后面的应用,方方面面我们都在做。刚才姚院士也讲了很多清华最新的工作。所以我就想跟大家分享一下,在通用人工智能时代,我们应该怎么去思考大模型,我想谈几点自己的看法。

第一个思考,算力是门槛

今天的通用人工智能、大模型、深度学习,最重要的一件事情是最近这些年整个人工智能算力整体的增长。

过去10年,大模型用到算力的增长,一开始是每年六七倍的增长,后来每年超过4倍的增长。我现在问大家一个问题,如果有一件事情一年涨4倍,10年会涨多少倍?你先想一想,我一会儿再回到这个问题上。

大家都知道这一波人工智能发展,最获益的公司就是英伟达,英伟达的出货量逐年递增,算力逐步增强,整个公司的市值也成为全世界3个3万亿美元市值的公司(微软、苹果、英伟达)之一。最重要的还是因为每年大家对算力的需求。2024年购买英伟达芯片的数量还在急剧增长,比如埃隆·马斯克,他现在在建一个10万H100卡的集群,本身建万卡系统就非常困难了,建10万卡系统更困难,对网络的要求都非常高。

今天讲算力、大模型这件事情,最重要的就是(算力和数据)扩展(Scaling Laws),算力越多,智能越增长,现在大家都还没有摸到天花板。其中很不幸的是,整个数据量大了以后,算力的增长还不是线性增长,算力的增长更加像是一个平方的增长。

因为模型大了以后,要把模型训练出来,数据的量也要堆上去,所以相对来讲更加像是一个平方的增长。所以对算力的要求,过去10年非常巨大。所以我就讲一句话,今天要做人工智能大模型,讲卡伤感情、没卡没感情。

我刚才问了大家一个问题,每年涨4倍,10年涨多少倍?我们学计算机的人都知道有一个东西叫“摩尔定律”,每18个月左右算力增长一倍,英特尔这么多年就是这样发展起来的。为什么英伟达现在已经超越了英特尔?很重要的原因就是它的增长速度不一样。如果18个月涨一倍,10年大概涨100倍,这也是非常了不起的事情;如果每年涨4倍,10年就是100万倍,这个增长是非常惊人的。如果你这样想问题,英伟达的市值过去这10年涨得这么快,也就是可以理解的。

第二个思考,关于数据的数据

算力、算法和数据,是人工智能重要的三个因素。前面我提到我们需要很多的数据才能训练通用人工智能。当ChatGPT3出来的时候,当时还只是在发表论文阶段,说需要2万亿的Token的数据量;到GPT-4出来的时候,大概是12T的数量;GPT-4不断地训练,今天估计它已经超过20T的数量。对人工智能关心的人都知道,这么长时间以来大家一直等待着GPT5出来,但是它一直迟迟没出来,如果有GPT-5出来,我个人判断可能会上到200T的数据量。回过头来问,互联网上没有那么多好的数据,等你清洗完以后,可能20T就差不多到顶了,所以未来要做GPT-5,除了现有的数据,还要更多的多模态数据,甚至人工合成的数据。

很有意思的一件事,就像过去三四十年,大家把自己的信息放到网上分享,以前我们觉得是在给搜索引擎打工,现在更加了不起的是,我们三四十年的积累,就是为了ChatGPT这样一个时刻,它把所有的东西整合在一起,通过强大的算力,把这样一个人工智能模型学出来,就是发生了这样一件事情。

第三个思考,大模型的下一章

干到今天了,下一步应该怎么办?首先是语言模型。以ChatGPT为代表,它的底层技术是自然语言处理。今天大家正在干的是多模态模型,以GPT-4为代表,里面很多技术是计算机视觉。再向前走,就是要做具身智能。具身智能的目的在哪里?实际上是我们要建一个世界模型,就算是多模态的,底层的物理模型也是没有的,所以要做这样一个世界模型。世界模型就是你不仅要读万卷书,还要行万里路,把世界上更多的知识再反馈回你的大脑里。所以应该做机器人。我就觉得深圳应该下定决心做机器人,做具身智能。机器人里面有一个特别的赛道叫自动驾驶,自动驾驶是一个特别的机器人,只是它是在给定的路线上行驶。

要怎么做?有很多多模态的科研工作要做,我相信一个非常重要的方向是多模态的理解和生成的统一。就算Sora做出来,它也是分开的,多模的生成和多模的理解没有统一起来。这方面有很多科研的工作我们可以做。

举一个例子,我的几个学生做了一家大模型公司阶跃星辰,他们多模态的理解做得非常优秀。如果拿一张图给人工智能看一看,为什么图中的行为被称为“无效技能”,AI给你解释是,这个图看起来好像是一个小朋友在地上打滚,但是他妈妈无动于衷,自己在看手机和喝饮料,所以小朋友这个技能就被称为无效技能。AI现在对图的理解做得越来越好。

第四个思考,人工智能的范式转移

两个礼拜前,OpenAI发布了最新一个模型就是o1。前面我也提到GPT一直发展,到了GPT4以后,GPT5一直出不来,大家就在想,如果只是大模型参数的增长,是不是走到顶了?没有人知道,现在它并没有放出来,我们国内也没有做出更加超大的模型。

但是现在一个新的维度出现了,不是做前面的预训练(扩展),而是在做推理的时候再去做扩展。它是从原来的GPT这样一个思路,变成了今天的自主学习的道路,就是在推理这一步强化学习,不断地自我学习的过程。

以前我们做预训练,基本上就是预测下一个字是什么,下一个token是什么,现在新的思路是要打草稿,试试看这条路对不对,那条路对不对,就像人的大脑的思考,有一个快系统、一个慢系统,就像我们做数学题一样,先打个草稿,看看哪个路走得通,有一个思维链,再看优化思维链过程中的机会。到现在为止只有OpenAI把这样一个系统放出来,我也鼓励大家看看这里面的一些例子。

最重要的是,它整个过程非常像人类思考问题、分析问题,打草稿、验证、纠错、重新来,这个思路空间就会非常大。做这件事也需要非常多的算力才行。

第五个思考,大模型横扫千行百业

所有的公司都要面对大模型带来的机会,但是不需要每个公司都做通用的大模型,如果你连1万张卡没有,是没有做通用大模型的机会的,要做通用大模型,至少要有万卡。

比如说GPT4出来的时候,它的训练的总量是2×10^25 FLOPS。这么大的训练量,1万张A100卡也要跑一年时间才能跑到这个量,如果这个量都跑不到,就不存在做出真正的通用大模型。有了通用大模型,我们在这个基础上可以建自己的行业大模型,比如金融、保险,可能千卡就可以做得非常好,在上面做一些微调。对一个企业来讲,你有自己的数据,有内部数据、客户数据,把这些数据拿出来,几十张、上百张卡就可以做一个面向自己企业的非常好的模型。所以它是一层一层不断地搭起来的。

当然还有一个非常重要的维度,也是我非常喜欢的,就是未来的个人大模型。今天我们已经慢慢在PC、手机里面(数据有一定的积累),对我们的理解越来越多,未来我相信有这样一个超级智能帮助你的AI,收集了相关数据以后,它可以建一个自己的个人大模型。这是在(个人)终端部分,手机就是一个很自然的事情。PC方面,微软、联想这些PC公司也在推一个AI PC的概念,所以也有这样一些机会。

在中国的大模型建设浪潮当中,越来越多的是行业大模型。这里举一个例子,因为中国的大模型上线之前需要网信办批准,到今年7月底之前,中国一共有197个模型被网信办批准,当中70%是行业大模型,30%是通用大模型。这个趋势肯定是这样的,未来通用大模型的占比会越来越低。比如我们可以在通用大模型上做金融模型,这是上海的一家公司做的面向他的金融客户的大模型。比如英伟达的财报出来了,马上可以总结出它的亮点、问题是什么。

第六个思考,AI Agent,从愿景到落地

今天我们看到大模型最大的超级应用是什么,最大的机会在哪里。很多人现在还在不断地尝试,想找到一个超级应用。实际上超级应用一开始就在那里,这个超级应用就是一个超级助理,就是一个超级Agent。

以前我跟盖茨在微软一起做了很多年的工作,我们都在思考这个问题。它难在哪里?难在真正你要做有用工作的时候,要理解一个工作流,你问了一个问题,它能一步一步拆解。今天能做的,又有一定影响力的,比如做客服、个人助理。但是很多工作是没法弄的,它为什么没法弄呢?你要做一个数字大脑。底下的大模型只是第一步,大模型的能力还没有强大到能够把上面的这些工作都帮你一步一步做掉。因为你真正要做这样一个Agent,让它能做事情,它要了解下面这些问题是什么,每一部分都有对应的技能。

大家用今天的模型已经做了很多不错的例子,比如你可以做AI健康顾问,讲你对化妆品的理解,推荐化妆品,接下来大家会看到非常多这方面的应用。

第七个思考,开源和闭源

过去几十年世界科技的发展,特别是中国科技的发展,有两件事情是非常重要的。

第一是出现了互联网,有了互联网之后,你就可以在网上找到所有的论文、资料。

第二是开源,开源就使得你做应用的时候,跟领先者的差距急剧缩短。但是开源这件事情跟大模型、数据库的开源还不一样,虽然现在开源的能力是直逼闭源。国内也有很多公司在做开源的东西,开源今天做得非常好的是Meta的Llama 3.1,号称和OpenAI的差距不大了。我不这么认为,我认为它并不是传统的开源,它只是开源了一个模型,并没有给你原代码和数据,所以我们在用开源系统的时候,也要下定决心真正理解大模型的系统闭源的工作。

第八个思考,重视AI治理

因为AI发展太迅猛了,全世界对AI安全都非常重视。因为这件事情的影响实在是太大了,人工智能对千行百业、对整个社会的冲击非常大,整个世界的发展实际上是要大家共同来面对的。

第九个思考,重新思考人机关系

我刚才介绍了文生文、文生图、文生视频——有多少是机器的智能,有多少是因为人机交互给我们带来的震撼?

大概10年前,《纽约时报》专栏作家John Markoff写了一本我非常喜欢的书《Machine of Loving Grace》,当中总结了科技过去发展的两条线:一条是人工智能;另外一条是IA(Intelligent Augmentation),它是智能的增强,就是人机交互。有了计算机之后,它帮助人做了很多事情,下棋是其中一个例子。

事实上,真正把人机交互搞清楚,才能成为每一代高科技企业真正有商业价值的领导者。今天人工智能的界面已经非常清晰了,就是对话的过程,今天的代表是ChatGPT。但是讲OpenAI加上微软就代表这个时代还太早,他们是领先了,但是未来还有很多想象的空间。

第十个思考,智能的本质

今天虽然大模型已经给大家带来很多的震惊,但是我们对大模型、深度学习是没有理论的。今天,我们恨不得有任何理论都觉得很好。而不像在物理学,从物理的角度讲,大到浩瀚的星空、小到微小的量子都有很美的一些物理的定律来描述。今天人工智能还没有这样的理论,没有可解释性、没有鲁棒性。今天深度学习的框架到不了真正的通用人工智能。

关于人工智能的涌现,大家只是讲讲,并没有讲清楚。为什么模型大到一定程度智能就涌现了?为什么70B的模型就能涌现智能?没有这样的道理。所以我们也在非常努力地研究这方面的问题。去年暑假我也在香港科技大学组织了一场主题为“Mathematical Theory for Emergent Intelligence”的研讨会,讨论涌现智能背后还是要把一些科学原理、数学原理讲清楚,要有更多愿意探索的人参与进来,特别是像腾讯“科学探索奖”、“新基石研究员”项目的出现,有更多的年轻科学家加入进来,有更多的信心、信念深入到为未来人工智能发展再有突破的难的问题当中。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

相关文章:

关于大模型的10个思考

9月28日,第四届“青年科学家50论坛”在南方科技大学举行,美国国家工程院外籍院士沈向洋做了《通用人工智能时代,我们应该怎样思考大模型》的主题演讲,并给出了他对大模型的10个思考。 以下是他10个思考的具体内容: 1…...

CFR( Java 反编译器)---> lambda 表达式底层实现机制

一、安装教程 CFR(Class File Reader)是一个流行的Java反编译器,它可以将编译后的.class文件或整个.jar文件转换回Java源代码。以下是CFR的下载和使用教程: 下载CFR 访问CFR的官方网站或GitHub仓库:CFR的最新版本和所…...

《C++多态性:开启实际项目高效编程之门》

在 C的广阔编程世界中,多态性是一个强大而富有魅力的特性。它为程序员提供了极大的灵活性和可扩展性,使得代码能够更加优雅地应对复杂的业务需求。在实际项目中,理解和正确应用 C的多态性至关重要,它可以显著提高代码的质量、可维…...

UDS_5_输入输出控制功能单元

目录 一. 0x2F服务 一. 0x2F服务 InputOutputControlByIdentifier(0x2F)服务 用于替换服务器输入信号的值或内部功能控制电子系统的某个输出(执行器) •请求报文 A_Data Byte Parameter Name Cvt Byte Value #1 InputOutputControlByIdentifier Request SID M 0x2F dataI…...

CAD快捷键

CAD快捷键 功能快捷键描述直线L点PO多段线PL多用于描边构造线XL无限长直线射线RAY样条曲线SPL绘制光滑曲线–––圆弧A圆C矩形REC正多边形POL–––填充H圆角F倒角CHA–––打断BR分解X合并J–––创建块B插入块I 功能快捷键描述移动M复制CO擦除E修剪TR延伸EX拉伸S镜像MI偏移…...

Spring6梳理12——依赖注入之注入Map集合类型属性

以上笔记来源: 尚硅谷Spring零基础入门到进阶,一套搞定spring6全套视频教程(源码级讲解)https://www.bilibili.com/video/BV1kR4y1b7Qc 12 依赖注入之注入Map集合类型属性 12.1 创建Student类和Teacher类 Student类中创建了run…...

基于SpringBoot校园失物招领系统设计与实现

文未可获取一份本项目的java源码和数据库参考。 本课题的作用、意义,在国内外的研究现状和发展趋势,尚待研究的问题 作用:本课题的目的是使失物招领信息管理清晰化,透明化,便于操作,易于管理。通过功能模…...

推荐4款2024年热门的PDF转ppt工具

有时候,我们为了方便,需要将PDF里面的内容直接转换的PPT的格式,既方便自己演示和讲解,也让我们可以更加灵活的进行文件的编辑和修改。如果大家不知道要如何进行操作的话,我可以为大家推荐几个比窘方便实用的PDF转换工具…...

[深度学习]卷积神经网络CNN

1 图像基础知识 import numpy as np import matplotlib.pyplot as plt # 图像数据 #imgnp.zeros((200,200,3)) imgnp.full((200,200,3),255) # 可视化 plt.imshow(img) plt.show() # 图像读取 imgplt.imread(img.jpg) plt.imshow(img) plt.show() 2 CNN概述 卷积层convrelu池…...

从零开始,Docker进阶之路(三):Docker镜像与命令

一、Docker核心名词 镜像文件、容器、仓库 镜像:简单理解为就是一个安装包,里面包含容器所需要运行的基础文件和配置信息,比如:redis镜像、mysql镜像等。 镜像的来源方式: 1.自己做镜像,比如自己开发微服…...

【计算机网络】网络层详解

文章目录 一、引言二、IP 基础知识1、IP 地址2、路由3、IP报文4、IP报文的分片与重组 三、IP 属于面向无连接型四、IP协议相关技术1、DNS2、ICMP3、NAT技术4、DHCP 一、引言 TCP/IP的心脏是网络层。这一层主要由 IP 和 ICMP 两个协议组成。网络层的主要作用是“实现终端节点之…...

后端开发刷题 | 最小的K个数(优先队列)

描述 给定一个长度为 n 的可能有重复值的数组,找出其中不去重的最小的 k 个数。例如数组元素是4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4(任意顺序皆可)。 数据范围:0≤k,n≤10000,数组中每个数的大小0≤val≤1000 要…...

【JavaEE】——阻塞队列,生产消费者模型(较难)

阿华代码,不是逆风,就是我疯,你们的点赞收藏是我前进最大的动力!!希望本文内容能够帮助到你! 目录 一:阻塞队列 1:概念 2:阻塞队列与普通队列比较 二:“生…...

makefile和CMakeLists/C++包管理器

make 大家可能会很奇怪,都什么年代了,还学makefile,cmake都有些过时了,为什么还要再学这个呢? 我是这么看待这个问题的,cmake跨平台性还是很有有优势的,有着多年积累的底蕴,借助大模…...

STM32 通过软件模拟 I2C 驱动 24Cxx 系列存储器

目录 一、AT24CXXX 系列存储器介绍1、基本信息2、寻址方式3、页地址与页内单元地址4、I2C 地址5、AT24CXX 的数据读写5.1 写操作5.1.1 按字节写5.1.2 按页写 5.2 读操作5.2.1 当前地址读取5.2.2 随机地址读取5.2.3 顺序读取 二、代码实现1、ctl_i2c2、at24c3、测试程序 I2C 相关…...

Go语言匿名字段使用与注意事项

1. 定义 Go语言支持一种特殊的字段只需要提供类型而不需要写字段名的字段,称之为匿名字段或者嵌套字段。 所谓匿名字段实际上是一种结构体嵌套的方式,所以也可以称作嵌套字段。 这种方式可以实现组合复用,即通过匿名字段,结构体…...

2024最新!!Java后端面试题(2)看这一篇就够了

hello uu们 感谢收看!!!!我最近听了一首歌《21》,真的很感慨,马上步入20的我也感觉时间真的飞快...望大家都能过上理想的生活,不负内心的所托...现在口语化更新答案,让大家更加模拟的…...

超好用的10款视频剪辑软件,从入门到精通

视频剪辑软件哪款比较好呢?无论是专业制作团队、自媒体创作者,还是家庭用户,一款好用的视频剪辑软件都能极大地提升创作效率和作品质量。以下是十款备受推崇的视频剪辑软件,分别从适用人群、易用程度和功能特点进行介绍。 1.影忆…...

python股票因子,交易所服务器宕机,量化交易程序怎么应对

炒股自动化:申请官方API接口,散户也可以 python炒股自动化(0),申请券商API接口 python炒股自动化(1),量化交易接口区别 Python炒股自动化(2):获取…...

瑞芯微RK3566鸿蒙开发板Android11修改第三方输入法为默认输入法

本文适用于触觉智能所有支持Android11系统的开发板修改第三方输入法为默认输入法。本次使用的是触觉智能的Purple Pi OH鸿蒙开源主板,搭载了瑞芯微RK3566芯片,类树莓派设计,是Laval官方社区主荐的一款鸿蒙开发主板。 一、安装输入法并查看输入…...

使用nest+typeorm框架写数据库导致mysql的binlog暴增记录

这 两天用nesttypeorm写了一个商城,上线后mysql日志binlog两天就达到了10几个G,排查结果如下: 有个功能是定时遍历所有未签收的订单,看看是否到了自动签收时间,如果到了,就把订单状态设置成已签收。 代码…...

组合逻辑元件与时序逻辑元件

组合逻辑元件和时序逻辑元件都是数字电路中的基本构建块,但它们在功能和结构上存在显著差异。 1. 组合逻辑元件: 内容: 组合逻辑元件的输出仅取决于当前的输入,而与之前的输入无关。 它们没有记忆功能。 常见的组合逻辑元件包括: 与门 (AND…...

天龙八部怀旧单机微改人面桃花+安装教程+GM工具+虚拟机一键端

今天给大家带来一款单机游戏的架设:天龙八部怀旧单机微改人面桃花。 另外:本人承接各种游戏架设(单机联网) 本人为了学习和研究软件内含的设计思想和原理,带了架设教程仅供娱乐。 教程是本人亲自搭建成功的&#xf…...

docker管理

拉取容器镜像 docker pull 镜像名:镜像版本查看镜像 docker images查看容器列表 # 查看正在运行的容器 docker ps # 查看全部的容器(包括停止的容器) docker ps -a进入容器 docker exec -it 容器id /bin/bash停止容器 docker stop 容器id运行容器 docker start 容器id删除…...

electron教程(三)窗口设置

在main.js文件中,创建窗口时会设置窗口的大小,其实还有很多其他属性,可以根据实际需求选择设置,但部分属性存在局限性,官网也有明确告知:自定义窗口 | Electron (electronjs.org) 项目文件目录如下&#x…...

图像增强论文精读笔记-Deep Retinex Decomposition for Low-Light Enhancement(Retinex-Net)

1. 论文基本信息 论文标题:Deep Retinex Decomposition for Low-Light Enhancement 作者:Chen Wei等 发表时间和期刊:2018;BMVC 论文链接:https://arxiv.org/abs/1808.04560 2. 研究背景和动机 低光照条件下拍摄的…...

2024年配置YOLOX运行环境+windows+pycharm24.0.1+GPU

1.配置时间2024/9/25 2.Anaconda-python版本3.7,yolox版本0.2.0 YOLOX网址: https://github.com/Megvii-BaseDetection/YOLOX 本人下载的这个版本 1.创建虚拟环境 conda create -n yolox37 python37 激活 conda activate yolox37 2.安装Pytorch cuda等&…...

vue-i18n在使用$t时提示类型错误

1. 问题描述 Vue3项目中,使用vue-i18n,在模版中使用$t时,页面可以正常渲染,但是类型报错。 相关依赖版本如下: "dependencies": {"vue": "^3.4.29","vue-i18n": "^9.1…...

大厂面试真题-什么是CAS单点登录?什么原理

CAS(Central Authentication Service,中央认证服务)单点登录(SSO,Single Sign-On)的原理主要基于统一的认证机制和票据验证过程,使得用户只需在多个相互信任的应用系统中登录一次,即…...

用Java提取PDF表格到文本、CSV、Excel工作表

如何精准地提取PDF格式中嵌入的表格数据,并将其无缝转换为更加易于分析和操作的形式,如纯文本、CSV文件或Excel工作表,是一项重要的文档处理技巧。使用Java,我们可以简单地实现这一过程。本文将介绍如何利用Java从PDF文档提取表格…...

临清建网站/百度下载安装最新版

文章来源: 学习通http://www.bdgxy.com/我们经常需要汇总数据而不用把它们实际检索出来,为此MySQL提供了专门的函数。使用这些函数,MySQL查询可用于检索数据,以便分析和报表生成。 这种类型的检索例子有以下几种: 确…...

交互式网站开发技术包括/app数据分析软件

Intel Driver and Support Assistant 以下简称 Intel DSA。 Intel DSA 依赖 Microsoft Visual C 2015-2019 Redistributable (x86),以下简称 vc_redist.x86。 我电脑上安装的 cv_redist.x86 版本是 14.23.27820,但 Intel DSA 的安装器(Intel-…...

建设金融网站哪家好/seozou是什么意思

顶管施工其实就是我们平时说的不开挖或者非开挖施工啦,其原理是借助于主顶油缸及管道间、中继间等推力,把工具管或掘进机从工作坑内穿过土层一直推进到接收坑内吊起。管道紧随工具管或掘进机后,埋设在两坑之间。为了响应中央的号召&#xff1…...

衡水专业做网站/武汉网站推广优化

push()/pop() -- shift()/unshift() 不建议使用delete concat() sort()排序 reverse()反转 数组迭代 Array.map()创建一个和原数组一一对应的新数组 Array.Filter()过滤掉不符合条件的元素 Array.every() / Array.some()返回bool类型值 Array.find()返回值 返回索引...

做网站首选九零后网络/市场营销专业就业方向

老许今日份知识分享来了。 处理数量较大的数据时,一般分为数据获取、数据筛选,以及结果展示几个步骤。在 Excel 中,我们可以利用数据透视表(Pivot Table)方便快捷的实现这些工作。 首先手把手的教你 如何在 Excel 中手动构建一个基本的数据…...

管理公司网站建设/推广引流哪个软件最好

作为一名大数据领域的从业者,我来回答一下这个问题。​在大数据技术的推动下,随着数据价值的不断提高,关于个人隐私的安全问题受到了更多的关注,关于如何在大数据时代保护个人隐私(数据安全)也是目前不少研究生的研究课题。大数据…...