【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
文章目录
- C++模板进阶编程
- 前言
- 第一章: 非类型模板参数
- 1.1 什么是非类型模板参数?
- 1.1.1 非类型模板参数的定义
- 1.2 非类型模板参数的注意事项
- 1.3 非类型模板参数的使用场景
- 示例:静态数组的实现
- 第二章: 模板的特化
- 2.1 什么是模板特化?
- 2.1.1 模板特化的分类
- 2.2 函数模板特化
- 示例:函数模板的特化
- 第三章: 类模板特化
- 3.1 类模板的全特化
- 示例:全特化
- 3.2 类模板的偏特化
- 示例1:部分参数的偏特化
- 示例2:指针类型的偏特化
- 3.3 类模板特化的应用示例
- 示例:对指针进行排序的类模板特化
- 第四章: 模板的分离编译
- 4.1 什么是模板的分离编译?
- 4.2 分离编译中的问题
- 示例:模板的声明和定义分离
- 4.3 解决模板分离编译问题
- 第五章: 模板总结
- 优点:
- 缺点:
- 第六章: 模板元编程(Template Metaprogramming)
- 6.1 什么是模板元编程?
- 6.1.1 编译期与运行期的区别
- 6.2 模板元编程的基础
- 示例:使用模板元编程计算阶乘
- 输出:
- 6.3 使用模板元编程进行条件选择
- 示例:编译期条件判断
- 6.4 TMP的实际应用
- 第七章: 模板匹配规则与SFINAE
- 7.1 模板匹配规则
- 7.1.1 优先调用非模板函数
- 7.1.2 如果没有非模板函数,匹配模板实例
- 7.2 SFINAE (Substitution Failure Is Not An Error)
- 示例:SFINAE 规则
- 第八章: 模板最佳实践
- 8.1 模板的代码膨胀问题
- 8.2 模板错误调试
- 写在最后
C++模板进阶编程
接上篇【C++篇】引领C++模板初体验:泛型编程的力量与妙用
💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!
👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!
🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!
前言
在C++模板编程中,基本模板的概念和用法已经能够解决大多数的编程问题,但在面对更加复杂的场景时,模板的特化、非类型模板参数以及分离编译等高级技术开始显得尤为重要。本文将详细讲解这些进阶模板知识,并结合具体示例进行剖析,帮助读者深入理解C++模板的高级用法。
第一章: 非类型模板参数
1.1 什么是非类型模板参数?
在模板编程中,除了类型参数(如 class T
或 typename T
)外,还可以使用非类型模板参数。非类型模板参数可以是常量,例如整数、枚举、指针等,它们在编译期间是已知的值。
1.1.1 非类型模板参数的定义
以下是一个简单的非类型模板参数的例子:
template<class T, size_t N>
class Array {
public:T& operator[](size_t index) {return _array[index];}const T& operator[](size_t index) const {return _array[index];}size_t size() const { return N; }private:T _array[N];
};
在这个例子中,N
是一个非类型模板参数,表示数组的大小,它必须在编译时已知。
1.2 非类型模板参数的注意事项
- 允许的类型:非类型模板参数可以是整型、枚举、指针或者引用类型,但浮点数、类对象和字符串不允许作为非类型模板参数。
- 编译期确认:非类型模板参数必须在编译期确认。这意味着它的值在编译时必须是一个常量表达式。
1.3 非类型模板参数的使用场景
非类型模板参数最常用于需要对某些固定值进行编译期优化的场景。例如,在实现容器类时,可以通过非类型模板参数来指定容器的大小,从而在编译时确定内存分配的规模。
示例:静态数组的实现
template<typename T, size_t N>
class StaticArray {
public:T& operator[](size_t index) {return _array[index];}const T& operator[](size_t index) const {return _array[index];}private:T _array[N];
};int main() {StaticArray<int, 10> arr; // 创建一个大小为10的静态数组arr[0] = 1;arr[1] = 2;std::cout << arr[0] << ", " << arr[1] << std::endl;return 0;
}
在这个例子中,N
是数组的大小,编译器在编译时已经知道这个值,因此它能够直接优化内存分配和数组边界检查。
第二章: 模板的特化
2.1 什么是模板特化?
模板特化是指在模板的基础上,针对某些特定的类型提供专门的实现。当模板的默认实现无法满足某些特定类型的需求时,就可以通过特化来处理。例如,针对指针类型的特殊处理。
2.1.1 模板特化的分类
模板特化分为两种:
- 全特化:对模板中的所有参数进行特化。
- 偏特化:仅对模板中的部分参数进行特化或进一步限制。
2.2 函数模板特化
示例:函数模板的特化
以下是一个函数模板特化的示例:
template<class T>
bool Less(T left, T right) {return left < right;
}// 针对指针类型的特化
template<>
bool Less<Date*>(Date* left, Date* right) {return *left < *right;
}int main() {Date d1(2022, 7, 7);Date d2(2022, 7, 8);std::cout << Less(d1, d2) << std::endl; // 正常比较日期Date* p1 = &d1;Date* p2 = &d2;std::cout << Less(p1, p2) << std::endl; // 使用特化版本,比较指针指向的内容return 0;
}
在这个例子中,函数 Less
针对 Date*
指针类型进行了特化,以正确处理指针类型的比较。
第三章: 类模板特化
3.1 类模板的全特化
全特化指的是对模板中的所有参数进行特化,适用于某些特定类型,完全替代原始的模板实现。
示例:全特化
template<class T1, class T2>
class Data {
public:Data() { std::cout << "Data<T1, T2>" << std::endl; }
};template<>
class Data<int, char> {
public:Data() { std::cout << "Data<int, char>" << std::endl; }
};int main() {Data<int, int> d1; // 使用原始模板版本Data<int, char> d2; // 使用全特化版本
}
在这个例子中,Data<int, char>
这个类型的对象会调用全特化的版本,输出 “Data<int, char>”。
3.2 类模板的偏特化
偏特化允许对模板的一部分参数进行特化,而不需要对全部参数进行特化。它使得模板能够更灵活地处理复杂的类型组合。
示例1:部分参数的偏特化
template<class T1, class T2>
class Data {
public:Data() { std::cout << "Data<T1, T2>" << std::endl; }
};// 偏特化版本,将第二个模板参数特化为int
template<class T1>
class Data<T1, int> {
public:Data() { std::cout << "Data<T1, int>" << std::endl; }
};int main() {Data<int, char> d1; // 调用原始模板Data<int, int> d2; // 调用偏特化版本
}
在这里,Data<int, int>
将调用偏特化版本,而 Data<int, char>
将调用原始模板版本。
示例2:指针类型的偏特化
template<class T1, class T2>
class Data {
public:Data() { std::cout << "Data<T1, T2>" << std::endl; }
};// 偏特化版本,将两个参数特化为指针类型
template<class T1, class T2>
class Data<T1*, T2*> {
public:Data() { std::cout << "Data<T1*, T2*>" << std::endl; }
};int main() {Data<int, int> d1; // 调用原始模板Data<int*, int*> d2; // 调用指针类型偏特化版本
}
在这个例子中,Data<int*, int*>
将调用偏特化的指针版本,输出 “Data<T1*, T2*>”。
3.3 类模板特化的应用示例
类模板特化在处理不同类型的对象时,能够大幅提高代码的灵活性和可读性。以下是一个具体的应用场景:
示例:对指针进行排序的类模板特化
#include <vector>
#include <algorithm>template<class T>
struct Less {bool operator()(const T& x, const T& y) const {return x < y;}
};// 针对指针类型进行特化
template<>
struct Less<Date*> {bool operator()(Date* x, Date* y) const {return *x < *y;}
};int main() {Date d1(2022, 7, 7);Date d2(2022, 7, 6);Date d3(2022, 7, 8);// 排序日期对象std::vector<Date> v1 = {d1, d2, d3};std::sort(v1.begin(), v1.end(), Less<Date>());// 正确排序// 排序指针std::vector<Date*> v2 = {&d1, &d2, &d3};std::sort(v2.begin(), v2.end(), Less<Date*>());// 使用特化版本,按指针指向的日期排序return 0;
}
通过类模板特化,可以实现对指针的排序,并确保比较的是指针指向的内容而不是地址。
第四章: 模板的分离编译
4.1 什么是模板的分离编译?
分离编译指的是将程序分为多个源文件,每个源文件单独编译生成目标文件,最后将所有目标文件链接生成可执行文件。在模板编程中,分离编译有时会带来挑战,因为模板的实例化是在编译期进行的,编译器需要知道模板的定义和使用场景。
4.2 分离编译中的问题
在模板的分离编译中,模板的声明和定义分离时会产生编译或链接错误。这是因为模板的实例化是由编译器根据实际使用的类型生成的代码,如果在模板的定义和使用之间缺乏可见性,编译器无法正确地实例化模板。
示例:模板的声明和定义分离
// a.h
template<class T>
T Add(const T& left, const T& right);// a.cpp
template<class T>
T Add(const T& left, const T& right) {return left + right;
}// main.cpp
#include "a.h"int main() {Add(1, 2); // 使用模板函数Add(1.0, 2.0); // 使用模板函数return 0;
}
在这种情况下,由于模板的定义和使用是分离的,编译器在不同编译单元中无法找到模板的定义,从而导致链接错误。
4.3 解决模板分离编译问题
为了解决模板的分离编译问题,可以采取以下几种方法:
-
将模板的声明和定义放在同一个头文件中
将模板的定义和声明都放在头文件中,使得所有使用模板的编译单元都可以访问到模板的定义。// a.h template<class T> T Add(const T& left, const T& right) {return left + right; }
-
显式实例化模板
通过显式实例化,将模板的具体实现放在.cpp
文件中。这样,编译器能够在实例化时找到模板的定义。// a.cpp template T Add<int>(const int& left, const int& right); template T Add<double>(const double& left, const double& right);
这两种方法都能有效避免模板分离编译带来的问题,推荐将模板的定义和声明放在同一个文件中,通常使用 .hpp
或 .h
文件格式。
第五章: 模板总结
模板编程在C++中是一种非常强大的工具,通过泛型编程、模板特化和非类型模板参数等技术,可以编写高效、灵活的代码。模板编程的优缺点总结如下:
优点:
- 代码复用:模板能够极大提高代码的复用性,减少重复代码的编写。
- 灵活性:可以根据不同的数据类型生成特定的代码,增强了程序的适应性。
- STL基础:C++的标准模板库(STL)就是基于模板技术构建的,它为容器、算法和迭代器提供了高度泛型化的接口。
缺点:
- 代码膨胀:模板实例化时会生成不同版本的代码,可能导致二进制文件变大。
- 编译时间变长:由于模板的编译期实例化,可能会导致编译时间增加。
- 调试困难:模板编译错误信息往往非常复杂,难以阅读和调试。
第六章: 模板元编程(Template Metaprogramming)
6.1 什么是模板元编程?
模板元编程(Template Metaprogramming,简称TMP)是一种利用C++模板机制进行编译期计算和代码生成的编程技术。它主要用于在编译时生成代码,并避免运行时的计算,从而提升程序的效率。模板元编程的核心思想是通过模板递归实现逻辑运算、数学计算等操作。
6.1.1 编译期与运行期的区别
运行期计算是在程序执行过程中进行的,例如加法运算、条件判断等。
编译期计算则是在编译阶段就确定的,模板元编程可以在程序编译过程中进行某些计算,从而减少运行期的负担。C++模板系统可以进行编译期递归和选择。
6.2 模板元编程的基础
模板元编程的基础主要是利用模板的递归和特化来进行编译期计算。一个简单的例子是使用模板递归来计算阶乘。
示例:使用模板元编程计算阶乘
// 基本模板
template<int N>
struct Factorial {static const int value = N * Factorial<N - 1>::value;
};// 特化版本,当N为1时终止递归
template<>
struct Factorial<1> {static const int value = 1;
};int main() {std::cout << "Factorial of 5: " << Factorial<5>::value << std::endl;return 0;
}
在这个例子中,Factorial<5>
会在编译期递归展开为 5 * 4 * 3 * 2 * 1
,并计算出阶乘值。在运行时打印结果,编译器已经在编译阶段完成了计算。
输出:
Factorial of 5: 120
6.3 使用模板元编程进行条件选择
模板元编程不仅可以用来进行数学运算,还可以用于条件选择(类似于 if-else
语句),从而在编译期决定代码的生成。例如,我们可以通过模板来选择某些代码块是否在编译时生成。
示例:编译期条件判断
template<bool Condition, typename TrueType, typename FalseType>
struct IfThenElse;template<typename TrueType, typename FalseType>
struct IfThenElse<true, TrueType, FalseType> {typedef TrueType type;
};template<typename TrueType, typename FalseType>
struct IfThenElse<false, TrueType, FalseType> {typedef FalseType type;
};int main() {// 当条件为 true 时,选择 int 类型IfThenElse<true, int, double>::type a = 10;// 当条件为 false 时,选择 double 类型IfThenElse<false, int, double>::type b = 3.14;std::cout << "a: " << a << ", b: " << b << std::endl;return 0;
}
在这个例子中,IfThenElse
模板类模拟了条件选择,在编译时根据布尔值 Condition
选择 TrueType
或 FalseType
。如果条件为真,则选择 TrueType
;否则,选择 FalseType
。
6.4 TMP的实际应用
模板元编程可以用于很多实际场景中,例如计算多项式、矩阵运算、位操作等。它的主要优势在于可以减少运行时的计算开销,将复杂的逻辑提前到编译时处理,提升程序的效率。
第七章: 模板匹配规则与SFINAE
7.1 模板匹配规则
C++编译器在调用模板时,会根据传入的模板参数进行匹配。模板匹配的规则比较复杂,涉及到多个优先级和模板特化。
7.1.1 优先调用非模板函数
在匹配时,编译器会优先选择非模板函数,如果有完全匹配的非模板函数存在,编译器会选择该函数,而不是实例化模板。
int Add(int a, int b) {return a + b;
}template<typename T>
T Add(T a, T b) {return a + b;
}int main() {int a = 1, b = 2;std::cout << Add(a, b) << std::endl; // 调用非模板版本return 0;
}
7.1.2 如果没有非模板函数,匹配模板实例
如果没有完全匹配的非模板函数存在,编译器将生成模板实例化版本。
template<typename T>
T Add(T a, T b) {return a + b;
}int main() {double x = 1.1, y = 2.2;std::cout << Add(x, y) << std::endl; // 调用模板实例化版本return 0;
}
7.2 SFINAE (Substitution Failure Is Not An Error)
SFINAE 是 C++ 模板系统中的一个重要规则,全称为 “Substitution Failure Is Not An Error”(替换失败不是错误)。SFINAE 是指在模板实例化过程中,如果某些模板参数的替换失败,编译器不会直接报错,而是选择其他可行的模板。
示例:SFINAE 规则
template<typename T>
typename std::enable_if<std::is_integral<T>::value, T>::type
CheckType(T t) {return t * 2;
}template<typename T>
typename std::enable_if<!std::is_integral<T>::value, T>::type
CheckType(T t) {return t * 0.5;
}int main() {std::cout << CheckType(10) << std::endl; // 整数类型,输出20std::cout << CheckType(3.14) << std::endl; // 浮点数类型,输出1.57return 0;
}
在这个例子中,SFINAE 机制允许我们根据类型的不同选择不同的模板版本。在 CheckType
函数模板中,当传入的参数是整数类型时,编译器选择第一个版本,而当参数是浮点数类型时,选择第二个版本。
第八章: 模板最佳实践
8.1 模板的代码膨胀问题
模板虽然提供了极大的灵活性,但它也会带来代码膨胀问题。因为模板实例化会生成多个版本的代码,所以在大规模使用模板时,可能会导致二进制文件体积增大。为了解决这个问题,可以考虑以下几种策略:
- 减少模板的实例化次数:通过显式实例化来控制模板的使用,避免重复生成相同功能的模板代码。
- 避免过度模板化:在设计模板时,尽量避免将所有逻辑都写成模板,只有在必要时才使用模板。
- 使用非类型模板参数:非类型模板参数可以减少模板的泛化程度,避免代码膨胀。
8.2 模板错误调试
模板编译错误通常会产生非常复杂的错误信息,难以调试。以下是一些常用的调试模板代码的方法:
- 分解模板代码:将复杂的模板逻辑分解为多个小的模板函数或类,逐步进行调试。
- 使用静态断言:在模板代码中插入
static_assert
来检查模板参数是否合法,提前发现问题。 - 阅读编译错误信息:虽然模板错误信息冗长,但可以从错误的上下文中找到模板参数替换的线索,从而定位问题。
写在最后
通过对C++模板进阶技术的深入讲解,我们探索了非类型模板参数、模板特化、SFINAE以及模板元编程等高级概念,这些工具不仅使我们的代码更加灵活高效,还为我们提供了在复杂场景下优化代码的思路。在实际项目中,合理利用这些模板技术可以显著提高代码复用性、减少运行时错误,并大幅提升编译期的优化效果。希望通过本篇内容的学习,你能够更好地理解并应用这些进阶技术,在未来的C++开发中游刃有余。
以上就是关于【C++篇】解密模板编程的进阶之美:参数巧思与编译的智慧的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️
相关文章:
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
文章目录 C模板进阶编程前言第一章: 非类型模板参数1.1 什么是非类型模板参数?1.1.1 非类型模板参数的定义 1.2 非类型模板参数的注意事项1.3 非类型模板参数的使用场景示例:静态数组的实现 第二章: 模板的特化2.1 什么是模板特化?2.1.1 模板…...
golang学习笔记20-面向对象(二):方法与结构体【重要】
本节内容是面向对象的核心与基础,很重要。 注意:由于导包语句已经在19讲(笔记19:面向对象的引入)展示过了,所以这里就不展示了。 一、方法的定义与细节 方法是与特定类型(通常是结构体&#x…...
广州C++信奥老师解一本通题 1919:【02NOIP普及组】选数
【题目描述】 已知nn个整数x1,x2,……xn 以及一个整数K(K<n)。从n个整数中任选K个整数相加,可分别 得到一系列的和。例如当n4, k3 4个整数分别为3,7,12,19 3, 7,12,19时,可得全部的组合与它们的和为: 371222 371929 7121938 3121934 现在,要求你计算出和为…...
cas5.3统一登录前后端分离改造方案(源码)
cas5.3 为什么选择cas5.3 版本 5.3 版本是最新的支持jdk8 的版本,并且项目架构基于maven ,商业项目中jdk8 仍是主流,在考虑商业收益的情况下,如果客户不要求,不会升级jdk, 基于Maven的项目比gradle 简单,…...
【ComfyUI】控制光照节点——ComfyUI-IC-Light-Native
原始代码(非comfyui):https://github.com/lllyasviel/IC-Light comfyui实现1(600星):https://github.com/kijai/ComfyUI-IC-Light comfyui实现2(500星):https://github.c…...
LVS+keepalived整合负载均衡配置
准备三台服务器;负载均衡服务器192.168.45.136,后端机器1,92.168.45.135,后端机器2,192.168.45.138 在两台后端机器上安装nginx服务,yum install -y nginx,并且启动nginx服务,systemctl start …...
Goland无法使用debug的修复
现象goland在debug的时候,一直卡在打的断点处,释放断点程序就执行结束。 查看其他博客说是当使用老版本的goland,golang版本为高版本时就会出现debug问题,需要手动更换dlv。 接下来以window为例子: 第一步࿱…...
MySQL和Doris开窗函数LAG执行时的区别
目标表的表结构 CREATE TABLE point_value_status_color_tmp ( id bigint NOT NULL, org_id varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL, device_id varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL, origin_ti…...
都是小憨憨!
周五晚上约了俩哥们儿吃饭,天南海北地聊着。其中一个哥们儿 L 讲,他在外面如何辛苦跑业务,维系客户,拿单子……但却被合伙人说是合伙人拉了 L 一把,而且可以分分钟灭了 L。所以 L 感觉到很委屈。然后我们俩就劝说趁早决…...
高级java每日一道面试题-2024年9月30日-服务器篇[Redis篇]-Redis持久化有几种方式?
如果有遗漏,评论区告诉我进行补充 面试官: Redis持久化有几种方式? 我回答: Redis 是一个高性能的键值存储系统,常用于缓存、消息队列和实时数据分析等场景。为了保证数据的持久性,Redis 提供了两种主要的持久化方式:RDB(Redi…...
ICML 2024 论文分享┆一个简单且通用的交通预测提示调优框架
论文简介 本推文介绍了2024 ICML的优秀论文之一《FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction》。论文的核心目标是通过整合空间和时间因素,精准地预测和分析交通流量的动态变化。然而,在交通预测领域,…...
【C++打怪之路Lv4】-- 类和对象(中)
🌈 个人主页:白子寰 🔥 分类专栏:C打怪之路,python从入门到精通,数据结构,C语言,C语言题集👈 希望得到您的订阅和支持~ 💡 坚持创作博文(平均质量分82)&#…...
滚雪球学MySQL[1.1讲]:MySQL简介与环境配置
全文目录: 前言1. MySQL简介与环境配置1.1 MySQL简介什么是MySQLMySQL的历史和版本MySQL的应用场景 1.2 安装与配置安装MySQL(Windows、Linux、macOS)配置文件解析(my.cnf)启动与停止MySQL服务 1.3 MySQL客户端工具MyS…...
Llama微调以及Ollama部署
1 Llama微调 在基础模型的基础上,通过一些特定的数据集,将具有特定功能加在原有的模型上。 1.1 效果对比 特定数据集 未使用微调的基础模型的回答 使用微调后的回答 1.2 基础模型 基础大模型我选择Mistral-7B-v0.3-Chinese-Chat-uncensored&#x…...
中关村环球时尚产业联盟 东晟时尚产业创新中心成立
2024年9月6日,中关村环球时尚产业联盟与东晟时尚创新科技(北京)有限公司于中关村科技园东城园举行了隆重的战略合作签约仪式。 中关村科技园东城园领导发表了致辞,并表示东城区作为首都北京的核心区域,拥有深厚的历史…...
基于SSM的宠物领养管理系统的设计与实现 (含源码+sql+视频导入教程+文档+PPT)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSM的宠物领养管理系统2拥有两种角色 管理员:宠物分类管理、领养管理、宠物商品管理、用户管理、寄存管理、丢失信息管理、订单管理等 用户:登录注册、收藏评…...
为什么要配置环境变量?
在 Windows 操作系统中配置环境变量有多个重要的原因,这些原因与软件开发、系统管理和日常使用密切相关。以下是一些主要的原因: 1. 系统路径(PATH) 可执行文件的位置:PATH 环境变量用于指定操作系统在何处查找可执行…...
条件熵公式详细解释、举例说明计算步骤
公式 7-4 是条件熵的表达式: E ( Y ∣ X ) ∑ i 1 m p ( X x i ) E ( Y ∣ X x i ) E(Y|X) \sum_{i1}^m p(X x_i) E(Y | X x_i) E(Y∣X)i1∑mp(Xxi)E(Y∣Xxi) 这个公式表示的是条件熵,它是衡量在已知某一特征 X X X 的情况下,…...
颍川陈氏始祖陈寔逆势崛起的原由(一)不屈的努力
园子说颍川 按陈寔的出身,与当官是风马牛不相及的。 东汉末年的社会,朝中外戚、宦官当道,地方则由世家大族把持,郡县的政治经济资源都由他们掌控分配,平民以及中小地主很难有出头之日,弄不好就被兼并了。…...
golang小项目1-家庭收支记账系统
项目地址:golang小项目 参考资料:尚硅谷golang教程P229 家庭收支记账系统 1. 系统简介 1.1 项目背景 在现代社会中,家庭的财务管理显得尤为重要。随着生活成本的不断上升,家庭需要有效地记录和分析收支情况,以确保…...
Visual Studio Code下载安装及汉化
官网:https://code.visualstudio.com/ 按照指示一步步操作即可: 汉化:...
MySQL—触发器详解
基本介绍 触发器是与表有关的数据库对象,在 INSERT、UPDATE、DELETE 操作之前或之后触发并执行触发器中定义的 SQL 语句。 触发器的这种特性可以协助应用在数据库端确保数据的完整性、日志记录、数据校验等操作。 使用别名 NEW 和 OLD 来引用触发器中发生变化的记…...
钉钉H5微应用Springboot+Vue开发分享
文章目录 说明技术路线注意操作步骤思路图 一、创建钉钉应用二、创建java项目三、创建vue项目(或uniapp项目),npm引入sdk的依赖四、拥有公网域名端口。开发环境可以使用(贝锐花生壳等工具)五、打开钉钉开发者平台&…...
项目:微服务即时通讯系统客户端(基于C++QT)]四,中间界面搭建和逻辑准备
四,中间界面搭建 前言:当项目越来越复杂的时候,或许画草图是非常好的选择 一,初始化中间窗口initMidWindow void mainWidget::initMidWindow() {//使用网格布局进行管理QGridLayout* layout new QGridLayout();//距离上方 20px 的距离&…...
【C语言】指针详解(一)
个人主页 : zxctscl 如有转载请先通知 文章目录 1.内存与地址2.指针变量与地址2.1 取地址操作符&2.2 指针变量2.3 指针类型2.4 解引用操作符2.5 指针变量的大小 3. 指针变量类型的意义3.1 指针的解引用 4. const修饰指针4.1 const修饰变量4.2 const修饰指针变量…...
unity3D雨雪等粒子特效不穿透房屋效果实现(粒子不穿透模型)
做项目有时候会做天气模拟,模拟雨雪天气等等。但是容易忽略一个问题,就是房屋内不应该下雨或者下雪,这样不就穿帮了嘛。 下面就粒子穿透物体问题做一个demo。 正常下雨下雪在室内的话,你可以看到,粒子是穿透建筑的。 那要怎么模拟真实的雨雪天气,不让粒子穿透房屋建筑呢…...
ROS2安装cartographer
2. 安装Cartographer和Cartographer ROS 使用apt安装(推荐): bash sudo apt install ros-humble-cartographer-ros或者,从源代码安装: bash sudo apt-get update sudo apt-get install -y python3-wstool python3…...
kafka测试
1】确认 ZooKeeper 服务状态 为了进一步确认 ZooKeeper 服务的状态,你可以执行以下操作: 检查 ZooKeeper 服务状态: docker ps 确保 ZooKeeper 容器正在运行。 检查 ZooKeeper 日志: docker logs zookeeper 查看最新的日志条目&…...
总结C/C++中内存区域划分
目录 1.C/C程序内存分配主要的几个区域: 2.内存分布图 1.C/C程序内存分配主要的几个区域: 1、栈区 2、堆区 3、数据段(静态区) 4.代码段 2.内存分布图 如图: static修饰静态变量成员——放在静态区 int globalVar 是…...
第168天:应急响应-ELK 日志分析系统Yara规则样本识别特征提取规则编写
目录 案例一:ELK 搭建使用-导入文件&监控日志&语法筛选 案例二:Yara 规则使用-规则检测&分析特征&自写规则 案例一:ELK 搭建使用-导入文件&监控日志&语法筛选 该软件是专业分析日志的工具,但是不支持安…...
丹东 建设集团 招聘信息网站/邢台网站网页设计
前言 CSS确实很重要,且有点奇技淫巧,看起来规则十分简单,但是创意更重要,如何用css构造出自己想要的效果,写的代码好看优雅十分重要。 在看了不借助Echarts等图形框架原生JS快速实现折线图效果并自己重新实现了以后&am…...
网站301跳转怎么做/现在网络推广方式
buuctf [Nginx]parsing_vulnerability_Fatesec的博客-CSDN博客Nginx 解析漏洞描nginx解析漏洞因为用户配置不当造成的漏洞。解析格式:1.jpg/.php、1.jpg/.php,1.jpg会被当成php格式解析nginx和iis7.x解析漏洞类似,都是加上/.php后文件以php格…...
做网站的的价位/排名优化价格
《北航计算机软件技术基础实验报告实验报告4-2——数据库应用系统的开发》由会员分享,可在线阅读,更多相关《北航计算机软件技术基础实验报告实验报告4-2——数据库应用系统的开发(10页珍藏版)》请在人人文库网上搜索。1、实验报告实验名称 数据库应用系…...
泉州专业网站建设哪家好/网站建设需要多少钱?
本发明涉及无线传感器网络领域,属于leach路由通信技术领域:。背景技术::物联网技术飞速发展,无线传感器网络(wirelesssensornetworks,wsn)也逐渐成为互联网研究领域的热门话题,主要包含汇聚节点…...
css 网站 实例/企业网站制作方案
Shell执行流程 1.Printthe info of reminding 打印提示信息 2.Waitinguser for input(wait) 等待用户输入 3.Acceptthe command 接受命令 4.Interpretthe command 解释命令 5.Findit,execute it, if have the parameter, the command interprete it 找到该命令,执行…...
服务器搭建网站视频教程/合肥seo公司
题目链接 这里的n很大10{100},数字十分大不能使用int、double等类型存储,需要使用字符串存储。 统计数字每位数上数字的和,再对于位数数字和转化为文字拼音。 #include <stdio.h> #include<string.h> int main(){char a[1002];…...