当前位置: 首页 > news >正文

一次实践:给自己的手机摄像头进行相机标定

文章目录

  • 1. 问题引入
  • 2. 准备工作
    • 2.1 标定场
    • 2.2 相机拍摄
  • 3. 基本原理
    • 3.1 成像原理
    • 3.2 畸变校正
  • 4. 标定解算
    • 4.1 代码实现
    • 4.2 详细解析
      • 4.2.1 解算实现
      • 4.2.2 提取点位
    • 4.3 解算结果
  • 5. 问题补充

1. 问题引入

不得不说,现在的计算机视觉技术已经发展到足够成熟的阶段了,还记得笔者刚工作的时候,相机标定还是个很神秘的技术,只有少数专业人员能够做,网上也找不到什么相关的资料。但是现在相机标定已经是一个非常普遍的技术了,也有不少的资料的可以参考,因此笔者突发奇想,既然那些大部头的相机可以标定,那么我们使用的手机摄像头一定也可以标定。因此,笔者就记录一下给自己手机摄像头的具体实践,算是弥补下当年没有学习到该技术的遗憾,毕竟要学习一项技术最好的办法就是亲自实践一下。

2. 准备工作

2.1 标定场

笔者见过不少正规的标定场,有的标定场很大,有很多带有标志物的竖条,还带有载动相机设备的轨道。不过目前比较流行且成本最低的办法就是使用棋盘格标定板了,也就是所谓的张正友标定法。

那么棋盘格标定板哪里来呢?打印到纸上倒是一个办法,不过可能有两个问题,一个是打印后每个格子的尺寸需要换算一下,由像素换成米制单位,这可能不是一个整数;另一个就是得找一面墙来贴上去,要贴的光滑平整还是挺难的。因此笔者没有选择这个办法,最后还是通过网上购物找的标定板。由于是给手机摄像头传感器尺寸都不是太大,标定板也不用选择太大,笔者最终选用的标定板尺寸如下所示:

图1:标定板尺寸

每个格子是5毫米,一共12X9个格子,整体尺寸还是比较小巧的,大概就一个手掌心大小。材质是玻璃基板,成本大概是50元左右。这个尺寸笔者实际体验还是有点偏小的,不过再大成本就上来了,建议有财力的同学可以适当选择大一点。

2.2 相机拍摄

接下来就是用手机摄像头对棋盘格标定板进行拍摄了。理论上进行标定解算只需要6组控制点就可以了,但是因为识别的控制点都是有误差的,需要多组点位来进行求解以提升精度。只拍摄一张照片获得的控制点也不太够,通常还需要获取多张照片上的控制点,避免局部最优的问题,提高解算过程的可靠性。如果可以的话,要使用多个视角、多个不同距离的标定板照片,同时最好保证标定板覆盖整个图像平面的不同区域,这样可以更好地估计畸变和其他参数。

在这里笔者拍摄了6张棋盘格标定板的图片,分别是前、后、左、右、上、下6个不同的位置和视角,如下所示:

图2:拍摄的棋盘格图片

可以看到拍摄的标定板区域都太靠中间了,不过也是没办法,使用的标定板尺寸确实有点偏小。拍摄的时候一旦靠的很近,手机拍照程序就会自动切换成近景拍摄。笔者不太确定切换成近景拍摄之后会不会修改相机的参数,所以都没有靠的很近。但是太远了拍照又有点糊,只能使用目前这样的效果。

现在很多手机拍照的功能会自动修正照片,比如滤镜,广角矫正等等,这些功能都尽量关了或者不使用。另外,拍照过程不要进行调焦,具体来说相机上会有0.6x、1x、2x、3x这样的参数,这代表变焦倍率,使用原始倍率(1x)进行标定即可。自动对焦功能当然也要关闭,保持镜头和焦平面的位置不变。

还有个问题是保持手机不动移动标定板来拍摄照片,还是保持标定板不动移动手机来拍摄照片?应该来说,两者原理上都可以实现,但是标定板不动,相机移动更常见一点,因为实现起来更见简单。笔者就是将棋盘格标定板通过双面胶粘在墙上实现的,也算是组成了一个成本最低的微型标定场了。

其实笔者也试过将标定板放在桌面上来拍摄,不过在室内拍摄很容易在照片上有影子,还是固定在墙上比较好一点。而且最好放采光比较好的墙面上,在白天日照充足的时候进行拍摄,以便获得最好的拍摄效果。

3. 基本原理

3.1 成像原理

相机标定虽然解算的是内参,但是其实连外参也解算了,因为相机标定解算使用的相机成像原理,这个过程中内参和外参会一起参与解算。在不考虑畸变的情况下,相机的成像原理可用下式(1)来表示:

s [ u v 1 ] = K [ R ∣ t ] [ X w Y w Z w 1 ] (1) s \begin{bmatrix} u\\ v\\ 1\\ \end{bmatrix} = K \begin{bmatrix} R|t\\ \end{bmatrix} \begin{bmatrix} X_w\\ Y_w\\ Z_w\\ 1\\ \end{bmatrix} \tag{1} s uv1 =K[Rt] XwYwZw1 (1)

在这个式子中:

  • [ X w Y w Z w ] T {\begin{bmatrix}X_w & Y_w & Z_w\\\end{bmatrix}}^T [XwYwZw]T表示世界空间中的三维点,也称为物方点。
  • [ u v ] T {\begin{bmatrix}u & v\\\end{bmatrix}}^T [uv]T表示图像平面上的像素坐标,也称为像点。
  • [ R ∣ t ] \begin{bmatrix}R|t\\\end{bmatrix} [Rt]是相机的外参矩阵。具体来说,就是旋转变换和平移变换的组合, R R R就是3X3的旋转矩阵, t t t则是一个3列维向量。由于旋转变换可以用欧拉角来表示,因而也可以表示成3维向量。3个旋转量,3个平移量,这就是相机的6个外参的由来。
  • K K K是相机的内参矩阵,通常表示为下式(2):
    K = [ f x 0 c x 0 f y c y 0 0 1 ] (2) K = \begin{bmatrix} f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 & 1\\ \end{bmatrix} \tag{2} K= fx000fy0cxcy1 (2)
    • f x f_x fx f y f_y fy分别是水平方向和垂直方向的焦距,单位为像素。
    • c x c_x cx c y c_y cy是像主点(即成像平面的光轴交点)坐标,单位为像素。
  • s s s是比例因子,这个参数是为了实现齐次坐标的转换,将其次三维坐标需要转为二维坐标。

以笔者的见识来说,上述相机成像原理其实与其他学科的一些知识有类似的地方:

  1. 计算机图形学。图形渲染中的几何变换,包含模型(model)变换、视图(view)变换和投影(projection)变换 ,合起来就是通常所说的MVP矩阵。模型变换包括旋转变换和平移变换,视图变换又是模型变换的逆变换,对应的就是式(1)的外参矩阵 [ R ∣ t ] \begin{bmatrix}R|t\\\end{bmatrix} [Rt]。不过投影矩阵有所不同,式(1)的内参矩阵 K K K是将点从相机坐标系转换为图像坐标系,图形渲染中的投影矩阵则是将点从将点从相机坐标系转换为裁剪坐标系。

  2. 摄影测量学。在摄影测量学中,这一套成像原理的公式被总结为共线方程,除了表示的形式不同,最显著的不同是内参只有三个:焦距和像主点二维坐标。这个公式个人认为并不太直观,但是比较容易进行平差计算。

如果有以上两者经验的读者,可以对照着进行理解,虽然它们看起来有点差异,但是笔者确定它们的原理都是一样的,都是基于空间的几何变换,只不过是应对于不同情况有不同的描述。

3.2 畸变校正

以上成像原理没有考虑到畸变的影响。为什么会产生畸变呢?很简单,相机镜头不是完美的平面光学系统,光线在传输时发生复杂的弯曲,这会导致图像中的直线在图像边缘发生扭曲。常见的畸变有径向畸变和切向畸变。

畸变校正看起来很玄乎,其实说穿了也非常简单,我们只需要理解一点,畸变校采用的有理函数的模型。所谓有理函数的模型,就是将校正前的位置x与校正后的位置y使用一个高阶多项式(形如 y = a x 3 + b x 2 + c x + d y=ax^3+bx^2+cx+d y=ax3+bx2+cx+d)来进行表示,没有什么物理上的原理,就是纯采用数学方式进行拟合,最后得到了每个高阶项的系数(a,b,c,d)。

鉴于畸变校正会增加对标定解算的复杂度,这里就不进行进一步论述了。对于初学者来说,理解成像原理的公式(1)更为关键一点。

4. 标定解算

4.1 代码实现

使用上述介绍的基本原理就可以进行标定解算了,不过解算方法比较复杂,我们还是结合具体的实现来解释,代码如下所示,这里主要使用了OpenCV库:

#include <filesystem>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>#ifdef _WIN32
#include <Windows.h>
#endifusing namespace cv;
using namespace std;int main() {
#ifdef _WIN32SetConsoleOutputCP(65001);
#endifvector<std::filesystem::path> imgPaths = {"C:/Work/CalibrateCamera/Data/front.jpg","C:/Work/CalibrateCamera/Data/left.jpg","C:/Work/CalibrateCamera/Data/right.jpg","C:/Work/CalibrateCamera/Data/up.jpg","C:/Work/CalibrateCamera/Data/down.jpg","C:/Work/CalibrateCamera/Data/back.jpg"};size_t imageNum = imgPaths.size();// 定义棋盘格尺寸 (内角点数)int boardWidth = 11;  // 列数int boardHeight = 8;  // 行数cv::Size boardSize(boardWidth, boardHeight);double cellSize = 0.005;Size imageSize(3072, 4096);  // 图像尺寸// 准备标定所需的物方点和像方点vector<vector<Point3f>> objectPoints(imageNum);  // 多张图像的3D物方点vector<vector<Point2f>> imagePoints(imageNum);   // 多张图像的2D像方点for (size_t ii = 0; ii < imageNum; ++ii) {// 加载棋盘格图像cv::Mat image = cv::imread(imgPaths[ii].string().c_str());if (image.empty()) {std::cerr << "Error: Could not load image!" << std::endl;return -1;}// 存储角点坐标std::vector<cv::Point2f> corners;// 转换图像为灰度cv::Mat grayImage;cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY);// 寻找棋盘格角点// cv::CALIB_CB_ADAPTIVE_THRESH | cv::CALIB_CB_NORMALIZE_IMAGEbool found = cv::findChessboardCorners(grayImage, boardSize, corners,cv::CALIB_CB_FAST_CHECK);// 如果找到角点,进行进一步处理if (found) {std::cout << "Chessboard corners found!" << std::endl;// 增加角点的精度cv::cornerSubPix(grayImage, corners, cv::Size(11, 11), cv::Size(-1, -1),cv::TermCriteria(cv::TermCriteria::EPS + cv::TermCriteria::MAX_ITER,30, 0.001));// 绘制角点std::string cornerImgPath = imgPaths[ii].parent_path().generic_string() +"/corner/" + imgPaths[ii].stem().string() +"_corner" + imgPaths[ii].extension().string();cv::drawChessboardCorners(image, boardSize, corners, found);cv::imwrite(cornerImgPath.c_str(), image);cout << corners.size() << endl;imagePoints[ii].resize(corners.size());for (size_t ci = 0; ci < corners.size(); ++ci) {imagePoints[ii][ci] = corners[ci];}objectPoints[ii].resize(corners.size());for (int hi = 0; hi < boardHeight; ++hi) {for (int wi = 0; wi < boardWidth; ++wi) {int ci = hi * boardWidth + wi;objectPoints[ii][ci].x = cellSize * wi;objectPoints[ii][ci].y = cellSize * hi;objectPoints[ii][ci].z = 0;}}} else {std::cerr << "Chessboard corners not found!" << std::endl;}}// 内参矩阵和畸变系数Mat cameraMatrix = Mat::eye(3, 3, CV_64F);  // 初始化为单位矩阵Mat distCoeffs = Mat::zeros(8, 1, CV_64F);  // 初始化为零// 外参的旋转和位移向量vector<Mat> rvecs, tvecs;// 执行标定double reprojectionError =calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,distCoeffs, rvecs, tvecs);cout << u8"重投影误差:" << reprojectionError << endl;cout << u8"内参矩阵:" << cameraMatrix << endl;cout << u8"畸变系数:" << distCoeffs << endl;return 0;
}

4.2 详细解析

4.2.1 解算实现

代码实现的步骤很简单,就是通过函数findChessboardCorners提取棋盘格图片的角点,将其传入calibrateCamera函数中,就得到了最终的解算成果,也就是内参矩阵。这其中的关键就在于calibrateCamera这个函数,我们可以看一下它的函数原型:

CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,InputArrayOfArrays imagePoints, Size imageSize,InputOutputArray cameraMatrix, InputOutputArray distCoeffs,OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,int flags = 0, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

其参数详解如下:

  • objectPoints:3D空间中的物方点坐标集合,也就是公式(1)中的 [ X w Y w Z w ] T {\begin{bmatrix}X_w & Y_w & Z_w\\\end{bmatrix}}^T [XwYwZw]T。由于是多张图片的多组点的集合,所以它的类型实际是std::vector<std::vector<cv::Point3f>>
  • imagePoints:图像中的像素坐标集合,对应公式(1)中的 [ u v ] T {\begin{bmatrix}u & v\\\end{bmatrix}}^T [uv]T,类型同样应该也是双重数组std::vector<std::vector<cv::Point2f>>
  • imageSize:输入图像的尺寸(宽度和高度),单位为像素。
  • cameraMatrix:输出的摄像机内参矩阵,也就是公式(1)中的 K K K,为3X3矩阵。
  • distCoeffs:输出的摄像机的畸变系数,通常为1X5或1X8的向量,包含径向和切向畸变系数。
  • rvecs:输出的旋转向量集合,可以转换成公式(1)中的 R R R。每个旋转向量对应一个图像,所以类型是std::vector<cv::Mat>
  • tvecs:输出的平移向量集合,对应公式(1)中的 t t t。每个平移向量对应一个图像,类型也是std::vector<cv::Mat>
  • 返回值:标定的重投影误差,用于衡量标定结果的精确度。误差越小,标定结果越准确。

通过对calibrateCamera函数的解析,相信读者就很容易明白为什么笔者要先讲公式(1)的成像原理。这个解算参数的输入输出都是根据公式(1)来的,不过另一个问题来了,输入的物方点和像方点是怎么来的呢?

4.2.2 提取点位

答案很简单,就是棋盘格上的角点。棋盘格由黑白相间的格子组成,所以它的角点是很容易提取的;另外一方面,棋盘格也是规整的,只要每个格子的尺寸都是一样,就很容易知道物方坐标。理论上,只要对图像提取角点,然后剔除掉非棋盘的角点就可以作为相机标定的像点了。不过,OpenCV提供了更进一步的接口findChessboardCorners,直接输入棋盘格的内角点个数,就可以自动检测出像点。如下图所示在一张图片上笔者提取的像点:

图3: 提取棋盘格的角点作为像点

正如上图所示,findChessboardCorners提取的是内角点,例如12X9的棋盘格,提取的内角点是11X8个,并且结果是按照从左到右,从上往下进行排序的。为什么要这么排序呢?因为很容易帮我们算出物方点。在相机标定这个应用中,相机的外参是不重要的,因此我们可以就以棋盘格标定板的左上角作为世界坐标系的原点,第1个点的坐标是(0,0,0),第2个点的坐标是(0.005,0,0),第3个点坐标是(0.010,0,0)…第12个点坐标是(0,0.005,0),第13个点坐标是(0.005,0.005,0)…就这么依次类推得到所有角点对应的世界空间坐标系坐标。

另外一点要提醒读者的是,findChessboardCorners这里我配置的是参数是cv::CALIB_CB_FAST_CHECK,是一种快速算法,cv::CALIB_CB_ADAPTIVE_THRESH和cv::CALIB_CB_NORMALIZE_IMAGE会对图像作预处理,能够增加提取棋盘格角点的稳健性。但是我实际使用发现程序卡住了,不知道是效率很低还是OpenCV的问题,就没有使用这两个选项。

4.3 解算结果

最终,笔者的结算结果如下所示:

重投影误差:0.166339
内参矩阵:[2885.695162446343, 0, 1535.720945173723;0, 2885.371543143629, 2053.122840953737;0, 0, 1]
畸变系数:[0.181362004467736;-3.970106972775221;0.0005157812878172198;0.0004644406171824815;23.559069196518]

解算的结果重投影误差是0.166339,表示每个物体点在重新投影到图像上时与实际检测到的角点位置的误差为0.166339像素。通常来说,这样的误差已经算是非常小,表明标定结果较为精确。

不过笔者还考虑一个问题,误差为0.166339像素,那么具体是多少米呢?以前做测绘软件的时候,平差的结果也是以像素为单位,总会有客户对我发起灵魂拷问:那具体是多少米呢?这次笔者也关注了一下这个问题,个人认为在相机标定这样的应用场景,确实无法直接使用物理单位表示精度,因为这个算法的结果就在于重投影到图像上的像素差为量度,这一点与相机外参的定向的误差量度有所不同。

对照内参矩阵,可得解算的焦距是 f x = 2885.695 f_x=2885.695 fx=2885.695 f y = 2885.372 f_y=2885.372 fy=2885.372,单位也是像素。那么这个焦距换算成物理单位是多少米呢?根据笔者查找的资料显示,焦距在像素和毫米之间的转换公式如下所示:
焦距(毫米) = 焦距(像素) × 传感器尺寸(毫米) 图像分辨率(像素) 焦距(毫米)= \frac{焦距(像素)×传感器尺寸(毫米)}{图像分辨率(像素)} 焦距(毫米)=图像分辨率(像素)焦距(像素)×传感器尺寸(毫米)

也就是说与相机传感器尺寸有关,不过关于传感器尺寸的描述有点蛋疼,比如网上显示我手机摄像头的传感器是1/1.49英寸,这通常表示传感器的对角线长度。可以根据对角线长度加上宽高比(例如4:3还是16:9)算出相机传感器的物理尺寸,进而知道具体物理单位的焦距值大小。不过传感器的对角线长度标称值和真实物理尺寸之间,会因为行业惯例和历史标准有所差异,所以算出来的也不一定正确,最好还是联系官方来确定。不过,标定出像素单位的焦距已经足够后续满足后续的使用场景了,笔者这里也就是寻根究底一下。

5. 问题补充

最后,补充一些没搞定或者暂时没理解的问题吧:

  1. 关于成像原理列出的公式(1)的内参矩阵部分,其实笔者也没弄清楚为什么将焦距分成X方向上的 f x f_x fx和y方向上的 f y f_y fy,有些资料上的内参矩阵并不是这么列的,《摄影测量学》教材上列出的共线方程更是只有一个焦距值 f f f
  2. 笔者记得似乎有个操作“相机重标定”,可以将使用固定焦距 f f f,调整像主点到图像中心,以及消除畸变的重投影,可以简化后续的空间计算,使得计算更为便捷。时间关系就留待后续研究了。
  3. 本文笔者并没有具体解释解算的算法原理,因为这不是一两句话就能说清楚的,在测绘学中有个过程有个专门的名词叫做平差;或者叫做状态估计、最大似然估计、非线性优化等等,至少我们需要知道最小二乘法原理才能继续论述这个,就留待后续的文章中进行讨论吧。

列出一些文章以供参考:

  1. 相机标定:从入门到实战
  2. 相机系列——相机标定简述
  3. 相机标定之张正友标定法数学原理详解
  4. 计算机视觉----相机标定

本文源代码和数据地址

相关文章:

一次实践:给自己的手机摄像头进行相机标定

文章目录 1. 问题引入2. 准备工作2.1 标定场2.2 相机拍摄 3. 基本原理3.1 成像原理3.2 畸变校正 4. 标定解算4.1 代码实现4.2 详细解析4.2.1 解算实现4.2.2 提取点位 4.3 解算结果 5. 问题补充 1. 问题引入 不得不说&#xff0c;现在的计算机视觉技术已经发展到足够成熟的阶段…...

【docker学习】Linux系统离线方式安装docker环境方法

centos7-linux安装docker(离线方式) 下载docker的安装文件 https://download.docker.com/linux/static/stable/x86_64/ 下载的是&#xff1a;docker-18.06.3-ce.tgz 这个压缩文件 将docker-18.06.3-ce.tgz文件上传到centos7-linux系统上&#xff0c;用ftp工具上传即可 解压…...

vscode开发uniapp安装插件指南

安装vuets的相关插件 首先是vue的相关插件&#xff0c;目前2024年9月应该是vue-offical 安装uniapp开发插件 uni-create-view &#xff1a;快速创建 uni-app 页面 安装uni-create-view之后修改插件拓展设置 勾选第一个选择创建视图时创建同名文件夹 选择第二个创建文件夹中生…...

Elasticsearch7.7.1集群不能相互发现的问题解决以及Elasticsearch7.7.1安装analysis-ik中文分词插件的应用

一、Elasticsearch7.7.1集群不能相互发现的问题解决 在使用elasticsearch7.7.1搭建集群&#xff0c;使用了3台服务器作为节点&#xff0c;但在搭建的过程中发现每台服务器的elasticsearch服务都正常&#xff0c;但是不能相互发现&#xff0c;期间进行了一些配置的修改偶尔出现了…...

蓝牙Mesh介绍

蓝牙Mesh&#xff08;Bluetooth Mesh&#xff09;是一种基于蓝牙技术的无线通信网络拓扑&#xff0c;用于在设备之间创建大规模的多点到多点网络。蓝牙Mesh网络可以让多个蓝牙设备相互通信和协作&#xff0c;适合需要高覆盖范围和高可靠性的场景&#xff0c;例如智能家居、工业…...

Qt 窗口中鼠标点击事件的坐标探讨

// 鼠标点击事件 void Widget::mousePressEvent(QMouseEvent *event) {/*event->pos()、event->windowPos()和event->localPos()都表示鼠标点击位置在窗口中的位置&#xff0c;它们的值都是一样的&#xff0c;区别在于event->pos()是QPoint类型&#xff0c;event-&…...

服务器虚拟化的全面指南

1. 引言 在数字化转型的浪潮中&#xff0c;服务器虚拟化成为现代IT基础设施的核心组成部分。它通过将物理服务器资源分割成多个虚拟资源&#xff0c;极大地提高了资源利用率和灵活性。本篇文章将深入探讨服务器虚拟化的概念、优势、挑战、技术工具、最佳实践及未来发展趋势。 …...

Linux启动mysql报错

甲方公司意外停电&#xff0c;所有服务器重启后&#xff0c;发现部署在Linux上的mysql数据库启动失败.再加上老员工离职&#xff0c;新接手项目&#xff0c;对Linux系统了解不多&#xff0c;解决起来用时较多&#xff0c;特此记录。 1.启动及报错 1.1 启动语句1 启动语句1&a…...

基于大数据的二手房价数据可视化系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

C++模拟实现vector容器【万字模拟✨】

更多精彩内容..... &#x1f389;❤️播主の主页✨&#x1f618; Stark、-CSDN博客 本文所在专栏&#xff1a; 学习专栏C语言_Stark、的博客-CSDN博客 项目实战C系列_Stark、的博客-CSDN博客 数据结构与算法_Stark、的博客-CSDN博客 座右铭&#xff1a;梦想是一盏明灯&#xff…...

论文笔记:LAFF 文本到视频检索的新基准

整理了ECCV2022 Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval 论文的阅读笔记 背景模型问题定义LAFF(Lightweight Attention Feature Fusion)LAFF Block 实验消融实验可视化对比试验 这篇文章提出了一种新颖灵活的特征融合方式&#x…...

iSTFT 完美重构的条件详解

目录 引言1. 短时傅里叶变换&#xff08;STFT&#xff09;与逆变换&#xff08;iSTFT&#xff09;概述2. 完美重构的条件3. 数学推导4. 实现要点5. 示例代码6. 总结 引言 在数字信号处理领域&#xff0c;短时傅里叶变换&#xff08;Short-Time Fourier Transform&#xff0c;简…...

SSH(安全外壳协议)可以基于多种加密算法

SSH&#xff08;安全外壳协议&#xff09;可以基于多种加密算法&#xff0c;确保数据的机密性和完整性。以下是 SSH 中常见的加密类型&#xff1a; 1. 对称加密 对称加密算法用于加密会话中的数据&#xff0c;常见的算法包括&#xff1a; AES&#xff08;高级加密标准&#…...

Navicat 工具 下载安装

准备工作 下载 下载链接&#xff1a;https://www.123865.com/ps/EF7OTd-kdAnH 演示环境 操作系统&#xff1a;windows10 产品&#xff1a;Navicat 版本&#xff1a; 15.0.25 注意&#xff1a;如果需要其他版本可以自行下载。 安装步骤 1、解压&#xff08;如果解压中出现提示…...

家用高清投影仪怎么选?目前口碑最好的投影仪推荐

双十一马上要到了&#xff0c;而且今年还有投影仪的家电国补&#xff0c;所以大家入手投影仪的需求也越来越多&#xff0c;但是家用高清投影仪怎么选&#xff1f;什么投影仪最适合家用&#xff1f;家庭投影仪哪个牌子质量最好&#xff1f;今天就给大家做一个2024性价比高的家用…...

阿里云盾同步漏洞之限制请求数

阿里云sdk不支持一次性请求太多&#xff0c;所以我们需要限制每次请求最大1000条&#xff0c;此代码无任何参考意义。仅做记录 func VulList(hole_type string) ([]*sas20181203.DescribeVulListResponseBodyVulRecords, error) {pageSize : 20allItems : make([]*sas20181203…...

docker安装kafka-manager

kafkamanager docker安装_mob64ca12d80f3a的技术博客_51CTO博客 # 1、拉取镜像及创建容器 docker pull hlebalbau/kafka-manager docker run -d --name kafka-manager -p 9000:9000 --networkhost hlebalbau/kafka-manager# 2、增设端口 腾讯云# 3、修改防火墙 sudo firewall-…...

Android Studio 新版本 Logcat 的使用详解

点击进入官方Logcat介绍 一个好的Android程序员要会使用AndroidStudio自带的Logcat查看日志&#xff0c;会Log定位也是查找程序bug的第一关键。同时Logcat是一个查看和处理日志消息的工具&#xff0c;它可以更快的帮助开发者调试应用程序。 步入正题&#xff0c;看图说话。 点…...

基于php摄影门户网站

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…...

uniapp中uni.request的统一封装 (ts版)

文章目录 前言一、我们为什么要去封装&#xff1f;二、具体实现1.创建一个请求封装文件&#xff1a;2.封装 uni.request&#xff1a;3.如何去使用&#xff1f; 总结 前言 在uniapp中如何去更简洁高效的发送我们的请求&#xff0c;下面就介绍了uni.request()二次封装。 一、我们…...

记录一次gRpc流式操作(jedis版)

使用背景: 从redis队列中发送和消费消息.(使用gRpc的流式实现的消费消息) gRpc协议类定义 service方法定义 service MQDataService{ rpc sendFacebookAndroidMsg(google.protobuf.StringValue)returns (ResultProto); rpc receiveFacebookAndroidMsg(empty)returns (stream g…...

20241001国庆学习

n60f/p 这个n是指旋转磁场的速度。 极数表示旋转转子的永磁体极数&#xff0c;具有一对N极&#xff0f;S极的电机称为双极电机。 极数可以是2、4、6、8等。 &#xff08;从电机控制的角度来看&#xff0c;当极数增加一倍时&#xff0c;转速将减半&#xff0c;当极数增加四倍时…...

基于SSM的农产品仓库管理系统【附源码】

基于SSM的农产品仓库管理系统&#xff08;源码L文说明文档&#xff09; 目录 4 系统设计 4.1 系统概要设计 4.2 系统功能结构设计 4.3 数据库设计 4.3.1 数据库E-R图设计 4.3.2 数据库表结构设计 5 系统实现 5.1 管理员功能介绍 5.1.1 用户管…...

fmt:C++ 格式化库

fmt 是一个现代化、快速且安全的 C 格式化库&#xff0c;专注于高效地格式化文本。它提供了类似 Python 的 format 功能&#xff0c;但具有更高的性能和类型安全特性。fmt 库在处理字符串格式化、日志输出以及构建用户友好的输出时尤为强大。自从 C20 标准引入 std::format 后&…...

RabbitMQ MQ的可靠性及消费者的可靠性

1.MQ可靠性&#xff1a; 如何保证消息的可靠性&#xff1a; (1).通过配置可以让交换机、队列、以及发送的消息都持久化。这样队列中的消息会持久化到磁盘&#xff0c;MQ重起消息依然存在。 (2).3.6.0版本开始&#xff0c;RabbitMQ引入了惰性队列模式&#xff0c;这种模式下&am…...

使用 Nexus 代理 Docker Hub 的配置指南

在本篇文章中&#xff0c;我们将详细介绍如何配置 Nexus 以代理 Docker Hub&#xff0c;从而实现更高效的镜像管理。以下步骤涵盖了从 Nexus 的安装到 Docker 客户端的配置。 1. 配置 Nexus 1.1 登录 Nexus 打开浏览器&#xff0c;访问 Nexus 的 URL&#xff08;例如 http:/…...

笔记整理—linux进程部分(4)进程状态与守护进程

进程的几种重要状态&#xff0c;就绪态&#xff1b;运行态&#xff1b;僵尸态&#xff1b;等待态&#xff08;浅度睡眠、深度睡眠&#xff09;&#xff1b;停止态。 就单核CPU而言&#xff0c;在同一时间只能运行一个进程&#xff0c;但实际上要运行的进程不止一个&#xff0c;…...

# VirtualBox中安装的CentOS 6.5网络设置为NAT模式时,怎么使用SecureCRT连接CentOS6.5系统?

VirtualBox中安装的CentOS 6.5网络设置为NAT模式时&#xff0c;怎么使用SecureCRT连接CentOS6.5系统&#xff1f; 一、查询 【VirtualBox Host-Only Network】虚拟网卡的网络配置 IP。 1、按键盘上WIN R 组合键&#xff0c;打开【运行】&#xff0c;输入【 ncpa.cpl 】&…...

7-1.Android SQLite 之 SQLiteDatabase 简单编码模板(SQLiteDatabase 使用、SQL 语句编写)

一、SQLiteDatabase SQLite 是一种轻量级的数据库引擎&#xff0c;它非常适合在移动设备&#xff08;例如&#xff0c;Android&#xff09;上使用 SQLiteDatabase 允许应用程序与 SQLite 数据库进行交互&#xff0c;它提供了增删改查等一系列方法 二、SQLiteDatabase 简单编码…...

灰度图像重心(质心)求取算法

1、图像的重心坐标计算 假设我们有一个二维图像,其中 (x, y) 表示图像中每个像素的坐标。I(x, y) 表示图像在 (x, y) 处的亮度(或像素值),通常是灰度值。 图像的重心坐标 (X, Y) 可以通过以下公式计算: X = Σ [x * I(x, y)] / Σ I(x, y) Y = Σ [y * I(x, y)] / Σ I(…...

乌鲁木齐网站建设制作/搜索引擎优化排名工具

Machine Learning读书会&#xff0c;面试&算法讲座&#xff0c;算法公开课&#xff0c;创业活动&#xff0c;算法班集锦 近期活动&#xff1a; 2014年9月3日&#xff0c;第8次西安面试&算法讲座视频 PPT 的下载地址&#xff1a;http://blog.csdn.net/v_july_v/articl…...

如何查找网站建设时间/韩国vs加纳分析比分

双链表是一种重要的线性存储结构&#xff0c;对于双链表中的每个节点&#xff0c;不仅仅存储自己的信息&#xff0c;还要保存前驱和后继节点的地址。PHP SPL中的SplDoublyLinkedList类提供了对双链表的操作。SplDoublyLinkedList类摘要如下&#xff1a;SplDoublyLinkedList imp…...

重庆城乡建设部网站首页/百度电脑网页版入口

css很强大&#xff0c;jQuery也很强大&#xff0c;两者结合在一起就是无比强大。这里要介绍的这个单击文字或图片内容放大居中显示的效果就是这两者结合的产物。 先来介绍css和jQuery各自发挥了什么作用吧&#xff1a; css&#xff1a;自适应圆角投影效果好吧&#xff0c;我承认…...

怎么向国外打广告/seo客服

这年代&#xff0c;做数据的&#xff0c;没人不知道 Spark 是什么吧。作为最火的大数据计算引擎&#xff0c;现在基本上是各互联网大厂的标配了。比如&#xff0c;字节跳动基于 Spark 构建的数据仓库&#xff0c;服务了几乎所有的产品线&#xff0c;包括抖音、今日头条、西瓜视…...

北碚网站建设哪家好/外链代发软件

2015-09-09 15:30:24近来&#xff0c;有些win10系统反映自己的电脑在自动更新驱动程序之后&#xff0c;在桌面上点击右键时&#xff0c;发现菜单栏里多出了NVIDIA面板或者AIT催化剂等选项&#xff0c;看着很不舒服。那么&#xff0c;win10系统该如何...2017-03-28 13:48:10电脑…...

知名网络公司有哪些/济宁seo推广

先打出nand表0 nand 011 nand 100 nand 111 nand 01容易发现(!a)a nand a然后(a&b)!(a nand b)然后(a|b)!((!a)&(!b))然后(a^b)(a|b)&(a nand b)所以通过nand我们可以实现任意一种位运算所以每一位我们想得到0/1都是可以的按道理[L,R]中符合位数要求的数都能得到然…...