【AIGC】AI时代的数据安全:使用ChatGPT时的自查要点
文章目录
- 💯前言
- 💯法律法规背景
- 中华人民共和国保守秘密法
- 中华人民共和国网络安全法
- 中华人民共和国个人信息保护法
- 遵守法律法规的重要性
- 💯ChatGPT的数据使用特点
- ChatGPT数据安全问题
- ChatGPT如何处理用户数据
- 用户使用ChatGPT应注意的数据安全风险
- 💯ChatGPT数据安全自查的重要性
- 💯ChatGPT实用建议与最佳实践
- 💯小结
💯前言
- 在当今生成式人工智能快速发展的背景下,数据安全问题变得尤为重要。随着AI技术的广泛应用,如何保障数据安全和隐私保护成为了不可回避的课题。尤其是在使用像ChatGPT这样的生成式AI工具时,保护个人和组织的信息安全,避免敏感数据的泄露,已经成为每个用户必须认真思考的关键问题。这不仅关系到用户个人的安全,也对整个社会的数据管理提出了更高的要求。
OpenAI官方文档关于GPT的数据隐私常见问题解答
💯法律法规背景
- 在处理数据安全问题时,了解相关法律法规的背景是非常关键的。在中国,数据安全和隐私保护法律体系已逐步完善,特别是近年来《网络安全法》、《数据安全法》和《个人信息保护法》的实施,这些法律为数据的采集、存储、处理和使用提供了明确的规范与要求。遵守这些法律不仅是企业和个人的法律义务,更是保障数据安全、预防信息泄露和违规使用的重要措施。
国家法律法规数据库
中华人民共和国保守秘密法
-
法律定位:
《中华人民共和国保守国家秘密法》是中国保护国家秘密、维护国家安全与利益的基础性法律。它规定了保密义务,适用于所有国家机关、武装力量、政党、社会团体、企事业单位及公民。 -
主要内容:
该法律明确了国家秘密的定义、分类以及保护措施和法律责任。规定了哪些信息属于国家秘密,以及这些信息在流转和使用过程中应如何处理,以确保安全。 -
重点条款:
法律强调了保密的重要性,明确规定了违反保密义务的法律后果,尤其是对国家安全构成威胁的行为,将面临严厉处罚。 -
中华人民共和国保守秘密法
中华人民共和国网络安全法
-
法律定位:
《中华人民共和国网络安全法》是为了保障网络安全,维护国家安全、社会公共利益以及公民、企业和组织的合法权益而制定的法律。它通过明确网络安全责任,规范网络数据管理,保护个人隐私和数据信息。 -
主要内容:
该法强调了网络运营者的责任,要求其保护个人数据和隐私,采取必要的技术和其他措施,防止网络数据的泄露、损毁和滥用。此外,法律对涉及国家安全的网络技术和服务提出了网络安全审查要求,以确保其合法使用。 -
重点条款:
法律明确要求网络运营者对个人信息进行保护,包括加密、匿名化处理,并对违反网络安全义务导致数据泄露或危害国家安全的行为规定了严厉的法律后果。 -
中华人民共和国网络安全法
中华人民共和国个人信息保护法
-
法律定位:
《中华人民共和国个人信息保护法》是专门为规范个人信息处理活动、保护个人信息权利而制定的法律,旨在保障个人信息的安全和隐私。 -
主要内容:
该法律规定了个人信息处理的原则,包括个人信息的收集、存储、使用、处理和传输。它还强调了个人对其信息的控制权,以及在数据处理过程中应尊重的个人隐私。 -
重点条款:
法律对个人信息的透明处理和合法性进行了明确规定,要求未经授权不得处理个人信息,并对侵犯个人信息的行为设定了法律后果,保障个人有权维护自身的信息权益。 -
中华人民共和国个人信息保护法
遵守法律法规的重要性
- 保障国家安全和社会稳定
法律法规的遵守是维护国家安全和社会稳定的关键,特别是在信息技术日新月异的背景下。确保敏感信息不被非法获取和利用,对于国家安全至关重要。遵循国家制定的法律法规,不仅是每个公民和企业的责任,也是对社会稳定的贡献。
- 保护个人隐私和数据安全
在个人信息广泛流通的时代,保护公民的个人数据和隐私问题尤为重要。依法合规处理数据,不仅符合法律要求,也有助于建立公众的信任,同时体现了企业和个人的社会责任感。通过规范数据的采集、处理和存储,可以有效防止信息泄露,保障个人信息的安全。
💯ChatGPT的数据使用特点
- 大规模数据训练
ChatGPT是通过大量的数据进行训练而形成的语言模型,其训练数据集涵盖了广泛的互联网内容,包括书籍、网站、文章等。这种海量数据的训练方式使得ChatGPT具备了强大的语言处理能力,能够理解并生成多样化的文本内容。
- 动态学习能力
ChatGPT不仅在初始训练阶段进行了学习,还能通过用户的持续交互和反馈进行学习和适应。每次用户的查询和反馈都有可能被用来优化和改进模型,使其更好地理解用户需求。
- 个性化响应
ChatGPT可以根据用户的输入提供定制化的响应。模型会根据用户的查询历史和互动方式,自动调整其回答的风格和内容,从而提供更符合用户需求的回答。这种个性化的能力让它能够更灵活地适应不同的用户群体。
ChatGPT数据安全问题
- 隐私泄露风险
用户在与ChatGPT交互时,可能会无意中透露个人信息,如姓名、地址或其他敏感数据。尽管OpenAI采取措施保护用户数据,但在数据处理和存储过程中,仍然存在隐私泄露的潜在风险。因此,用户应在使用ChatGPT时保持警惕,避免共享敏感信息。
- 数据滥用的可能性
用户输入的数据可能会被用于模型的训练和优化。如果这些数据包含敏感或私人信息,可能存在被不当使用的风险。尽管OpenAI声明了其数据使用政策,但用户在共享信息时仍需保持警觉,确保自己的隐私不受侵害。
ChatGPT如何处理用户数据
- 数据收集和使用
OpenAI会收集用户的查询数据,以改进和训练其模型。这些数据包括用户输入的文本、交互模式和反馈。通过分析这些数据,模型可以不断优化,提升性能和用户体验。
- 数据保护措施
为了确保数据的安全性,OpenAI实施了多项数据安全和隐私保护措施,如数据加密和访问控制。此外,OpenAI还遵守相关的数据保护法规,例如欧盟的《通用数据保护条例》(GDPR),以确保用户数据的安全性和合规性。
用户使用ChatGPT应注意的数据安全风险
- 避免泄露敏感信息
用户应避免在与ChatGPT的交互过程中透露个人或敏感信息,包括个人身份信息、地址、银行和金融信息等。这些信息一旦泄露,可能带来潜在的隐私风险。
- 了解数据使用政策
在使用ChatGPT之前,用户应了解OpenAI的数据使用政策和隐私条款。明确自己提供的数据是如何被收集、使用和保护的,确保对数据的处理有清晰的认识。
- 合理设置期望
需要认识到ChatGPT仍是基于大量数据训练的AI模型,其回答可能不完全准确或可靠。在使用该平台时,用户应结合其他信息来源和专业建议,合理评估其输出的内容。
💯ChatGPT数据安全自查的重要性
个人和组织的责任:
-
个人隐私保护
个人用户应确保敏感信息的安全,避免在与AI交互时泄露诸如姓名、地址、金融信息等。
-
组织数据安全
组织在使用生成式AI时,必须严格遵守数据保护法规,确保客户和公司机密数据不被泄露。
法律遵从性:
-
遵守法规
确保AI技术的使用符合当地数据保护及隐私法律的要求,例如欧洲的GDPR或中国的网络安全法等。
自查自纠的具体指南:
-
数据加密与保护
- 加密传输:确保与AI服务交互时,所有数据均通过安全、加密的通道进行。
- 安全存储:如果需要存储从AI服务获得的数据,必须采用加密和安全的存储解决方案。
-
避免输入敏感信息
- 敏感信息识别:培训员工识别敏感信息,如个人身份信息、商业机密、财务数据等。
- 限制输入:使用AI服务时,应避免输入任何敏感信息。
使用策略和培训:
-
制定政策
制定并实施安全使用生成式AI的内部政策,确保数据安全。
-
员工培训
定期对员工进行数据安全和隐私保护的培训,提升整体防护能力。
监督与审计:
-
监督使用
监督员工使用AI服务,确保操作符合内部政策及法律规定。
-
定期审计
定期对AI使用情况进行审计,包括数据处理和存储的审查。
更新与改进:
-
持续更新
随着法律和技术的发展,定期更新数据安全政策和实际操作流程。
-
反馈机制
建立有效的反馈机制,鼓励员工报告潜在的数据安全隐患。
结论:
对于任何使用生成式AI技术的个人和组织,数据安全自查都是必不可少的一环。通过实施并遵循上述指南,可以显著减少数据泄露和滥用的风险,并确保始终遵守相关法律法规。在信息技术飞速发展的当下,数据安全自查应成为日常工作的重要组成部分。
💯ChatGPT实用建议与最佳实践
明确数据分类
-
识别敏感数据:
识别和区分敏感数据类型,例如个人身份信息、财务数据或商业秘密等。
-
限制敏感数据输入:
避免在使用AI工具时输入敏感数据,特别是在公共或共享环境中操作时。
使用安全环境
-
加密通信:
确保与AI工具的所有数据传输采用加密技术,例如使用HTTPS或其他安全协议。
-
账户安全管理:
使用强密码,并定期更新密码;启用两步验证(2FA)以增加安全性。
定制AI应用
-
数据匿名化:
尽量使用匿名化或假数据与AI工具交互,减少数据泄露风险。
-
定制化应用:
根据具体需求定制AI工具的使用,避免通用解决方案带来的不必要风险。
知识产权保护
-
版权意识:
在使用AI生成内容时,需尊重原创者的版权与知识产权,确保合法使用。
-
避免侵权风险:
确保生成的内容不会侵犯他人的知识产权,遵循合法使用原则。
法律合规
-
遵守当地法律法规:
了解并遵守所在地区关于数据保护的相关法律法规,如GDPR或本地隐私法。
-
数据处理透明度:
确保数据处理流程的透明度,尤其是在涉及客户数据时,做到合规并可追溯。
定期评估和审计
-
风险评估:
定期对AI工具的使用实践进行风险评估,及时识别潜在安全隐患。
-
安全审计:
定期进行安全审计,确保AI工具的使用符合最佳实践,并遵循既定政策。
💯小结
通过本文的探讨,可以清楚地看到,在生成式AI工具迅速普及的今天,数据安全与隐私保护已成为每个用户和组织必须面对的重要课题。无论是个人使用还是企业应用,合理应对数据泄露风险、遵循法律法规、以及定期进行安全审查都是确保信息安全的关键步骤。通过掌握相关的安全实践和最佳使用策略,用户不仅能够在保护隐私的前提下,充分发挥AI工具的价值,还能够为未来的发展打下稳固的基础。这不仅是对个人和组织安全的保障,也是在面对技术飞速发展的挑战中不断进步的必由之路。- 未来的ChatGPT不仅会更加智能和强大,其对数据的处理能力也会更加精准和多样化。这意味着用户可以通过AI获得更高效、个性化的服务体验,但同时,也要求我们在技术与安全之间找到平衡点。对隐私的保护、对敏感数据的管理,以及对法规的遵守,将在这一过程中扮演至关重要的角色。随着AI技术的普及,数据隐私保护的标准必然会随之提升,只有在确保技术安全性的前提下,AI才能真正实现其广泛应用的潜力。
import torch; from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments; tokenizer = GPT2Tokenizer.from_pretrained('gpt2'); model = GPT2LMHeadModel.from_pretrained('gpt2'); def load_dataset(file_path, tokenizer, block_size=128): dataset = TextDataset(tokenizer=tokenizer, file_path=file_path, block_size=block_size, overwrite_cache=True); return dataset; def train_model(dataset, model): training_args = TrainingArguments(output_dir="./results", overwrite_output_dir=True, num_train_epochs=3, per_device_train_batch_size=4, save_steps=10_000, save_total_limit=2, logging_dir='./logs'); data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False); trainer = Trainer(model=model, args=training_args, data_collator=data_collator, train_dataset=dataset); trainer.train(); return model; def generate_text(model, tokenizer, prompt, max_length=100): inputs = tokenizer(prompt, return_tensors="pt"); outputs = model.generate(inputs['input_ids'], max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, temperature=0.7, top_k=50, top_p=0.95, do_sample=True); return tokenizer.decode(outputs[0], skip_special_tokens=True); dataset = load_dataset('path_to_your_text_file.txt', tokenizer); model = train_model(dataset, model); prompt = "In the future, AI will"; generated_text = generate_text(model, tokenizer, prompt); print(generated_text)
相关文章:
【AIGC】AI时代的数据安全:使用ChatGPT时的自查要点
博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯法律法规背景中华人民共和国保守秘密法中华人民共和国网络安全法中华人民共和国个人信息保护法遵守法律法规的重要性 💯ChatGPT的数据使用特点ChatGPT数据安全…...
什么是区块链桥?
什么是区块链桥? 区块链桥是一种实现资产从一个区块链转移至另一个区块链的工具,它解决了区块链技术中不同网络之间缺乏互操作性的问题。区块链桥通过创建代表另一区块链资产的合成衍生品,使得原本互不兼容的区块链资产能够相互连接和转移。…...
机器学习框架
机器学习框架 机器学习框架是用于开发和部署机器学习模型的软件工具。它们提供了一组API和工具,帮助开发人员在各种计算设备上构建、训练和部署机器学习模型。以下是几个常见的机器学习框架: 1.TensorFlow: TensorFlow是一个开源的人工智能…...
金三银四:20道前端手写面试题
文章目录 一、前言二、题目1. 防抖节流解读 2.一个正则题3. 不使用a标签,如何实现a标签的功能4. 不使用循环API 来删除数组中指定位置的元素(如:删除第三位) 写越多越好5. 深拷贝解读 6. 手写call bind applycall 解读apply 解读 …...
RAC被修改权限及相关问题
RDBMS : 19.19 修改RAC权限及相关问题 修改RAC权限,参考文档: How to check and fix file permissions on Grid Infrastructure environment (Doc ID 1931142.1) Script to capture and restore file permission in a directory (for eg. O…...
Golang | Leetcode Golang题解之第441题排列硬币
题目: 题解: func arrangeCoins(n int) int {return sort.Search(n, func(k int) bool { k; return k*(k1) > 2*n }) }...
数学建模--什么是数学建模?数学建模应该怎么准备?
前言 这是去年底学数学建模老哥的建模课程笔记;未来本人将陆陆续续的更新数学建模相关的一些基础算法,大家可以持续关注一下;提示:数学建模只有实战才能提升,光学算法没有啥意义,也很难学的很懂。 文章目录…...
Java项目实战II基于Java+Spring Boot+MySQL的智能物流管理系统(源码+数据库+文档)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者 一、前言 随着电商行业的蓬勃发展,物流行业迎来了前所未有的机遇与挑战。面对日益增长的订单量和复…...
【数据分享】2000—2023年我国省市县三级逐月植被覆盖度(FVC)数值(Shp/Excel格式)
之前我们分享过2000—2023年我国250米分辨率逐月植被覆盖度(FVC)栅格数据(可查看之前的文章获悉详情),该数据来源于高吉喜等学者在国家青藏高原科学数据中心平台上分享的数据,合成方式采用月最大值合成&…...
《Linux从小白到高手》理论篇(十一):Linux的系统环境管理
值此国庆佳节,深宅家中,闲来无事,就多写几篇博文。本篇详细深入介绍Linux的系统环境管理。 环境变量 linux系统下,如果你下载并安装了应用程序,很有可能在键入它的名称时出现“command not found”的提示内容。如果每…...
Qt/C++开源控件 自定义雷达控件
使用Qt框架创建一个简单的雷达图,包含动态扫描、目标点生成、刻度和方向标识。代码实现使用C编写,适合用作学习和扩展的基础。 1. 头文件与基本设置 #include "RadarWidget.h" #include <QPainter> #include <QPen> #include &…...
什么是IDE(集成开发环境)?
集成开发环境(IDE)详解 在软件开发的世界中,集成开发环境(IDE,Integrated Development Environment)扮演着至关重要的角色。它是一个综合性的软件应用程序,旨在为软件开发者提供一整套的、易于使用的工具集,以便他们能够更高效地编写、调试、测试和部署代码。简而言之…...
【Linux】用虚拟机配置Ubuntu 24.04.1 LTS环境
目录 1.虚拟机安装Ubuntu系统 2.Ubuntu系统的网络配置 3.特别声明 首先我们先要下载VMware软件,大家自己去下啊! 1.虚拟机安装Ubuntu系统 我们进去之后点击创建新的虚拟机,然后选择自定义 接着点下一步 再点下一步 进入这个界面之后&…...
MacOS升级Ruby版本详解:步骤、挑战与解决方案
MacOS升级Ruby版本详解:步骤、挑战与解决方案 在MacOS上升级Ruby版本是一个涉及多个步骤和考虑因素的过程。Ruby作为一种广泛使用的编程语言,其新版本通常会引入一系列改进,包括性能优化、安全修复和新特性。因此,升级Ruby版本不…...
Log4j的配置与使用详解
Log4j的配置与使用详解 Log4j介绍 Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台、文件、GUI组件,我们可以控制每条日志的输出格式;只需要通过一个配置文件就可以灵活的配置,…...
docker 的目录有那些,分别存放什么东西
Docker 的目录结构和文件存放位置取决于你所使用的操作系统和Docker的版本。以下是一些常见的目录和它们通常存放的内容: 通用目录 /var/lib/docker (Linux) 这是Docker在Linux系统上的主要数据目录。存放了镜像、容器、数据卷、网络等的元数据和状态信息。具体结构…...
开源模型应用落地-模型微调-语料采集-数据格式化(四)
一、前言 在自然语言处理(NLP)的快速发展中,语料采集作为基础性的步骤显得尤为重要。它不仅为机器学习模型提供了所需的训练数据,还直接影响模型的性能和泛化能力。随着数据驱动技术的不断进步,如何有效并高效地收集、清洗和整理丰富多样的语料,已成为研究者和工程师们亟…...
C语言+单片机
今天内容有点水哈哈(忙着练焊铁技术了嘻嘻) C语言 简单学习了while语言以及其与for语言的区别和适用方法 .循环结构: 初始化语句条件判断句条件控制句 for语句 for(int1;i<100;i){执行条件} for (int i 1; i < 100; i) {printf(&quo…...
vmvare虚拟机centos 忘记超级管理员密码怎么办?
vmvare虚拟机centos 忘记超级管理员密码怎么办?如何重置密码呢? 一、前置操作 重启vmvare虚拟机的过程中,长按住Shift键 选择第一个的时候,按下按键 e 进入编辑状态。 然后就会进入到类似这个界面中。 在下方界面 添加 init=/bin/sh,然后按下Ctrl+x进行保存退出。 init=/bi…...
使用 Vue3 和 Axios 实现 CRUD 操作
文章目录 1、准备工作2、创建 Vue 3 项目3、项目结构4、实现 CRUD 操作5、运行项目6、小结在当今的前端开发中,Vue.js 作为一款流行的 JavaScript 框架,正在被越来越多的开发者所青睐。尤其是 Vue 3 引入了 Composition API 和更优雅的响应式处理,使得模板编写和状态管理变得…...
.NET MAUI(.NET Multi-platform App UI)下拉选框控件
MAUI下拉选框控件详解: 在开发跨平台应用程序时,下拉选框(ComboBox)是一个极为常见且实用的控件,它允许用户从一组预定义的选项中选择一个。在.NET MAUI(.NET Multi-platform App UI)框架中&am…...
C++平台跳跃游戏
目录 开头程序Game.cpp源文件Player.h头文件Player.cpp源文件 程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好,我叫这是我58。 程序 Game.cpp源文件 #include <iostream> #include "Player.h" using namespace std; void printma…...
多系统萎缩患者必看!这些维生素助你对抗病魔
亲爱的朋友们,今天我们来聊聊一个相对陌生但重要的健康话题——多系统萎缩(MSA)。这是一种罕见的神经系统疾病,影响着患者的自主神经系统、运动系统和平衡功能。面对这样的挑战,科学合理的饮食和营养补充显得尤为重要。…...
深度学习模型性能优化实战之从评估到提升的全流程解析
1. 概述 在构建和使用机器学习模型的过程中,模型的效果评估和优化是两个至关重要的环节。无论模型是用于分类、回归还是其他任务,评估其表现以及持续优化模型性能,都是确保模型在实际应用中取得成功的关键。本节将重点介绍模型效果评估的定义…...
C++ | Leetcode C++题解之第446题等差数列划分II-子序列
题目: 题解: class Solution { public:int numberOfArithmeticSlices(vector<int> &nums) {int ans 0;int n nums.size();vector<unordered_map<long long, int>> f(n);for (int i 0; i < n; i) {for (int j 0; j < i;…...
【解密 Kotlin 扩展函数】扩展属性与扩展函数类似(十九)
导读大纲 1.1.1 扩展属性的创建和使用 1.1.1 扩展属性的创建和使用 之前, 我们已经了解声明 Kotlin 属性的语法 Kotlin中的顶级属性–传送门就像扩展函数一样,我们也可以指定扩展属性就像之前所说,属性和函数的区别在于前者是特征,后者是行为 相比扩展函…...
【Spring Boot 入门二】Spring Boot中的配置文件 - 掌控你的应用设置
一、引言 在上一篇文章中,我们开启了Spring Boot的入门之旅,成功构建了第一个Spring Boot应用。我们从环境搭建开始,详细介绍了JDK的安装以及IDE的选择与配置,然后利用Spring Initializr创建了项目,分析了项目结构&am…...
OpenCV第十二章——人脸识别
1.人脸跟踪 1.1 级联分类器 OpenCV中的级联分类器是一种基于AdaBoost算法的多级分类器,主要用于在图像中检测目标对象。以下是对其简单而全面的解释: 一、基本概念 级联分类器:是一种由多个简单分类器(弱分类器)级联组…...
深入Volatile
深入Volatile 1、变量不可见性: 1.1多线程下变量的不可见性 直接上代码 /*** author yourkin666* date 2024/08/12/16:12* description*/ public class h1 {public static void main(String[] args) {MyClass myClass new MyClass();myClass.start();while (tr…...
数据结构 ——— 顺序表oj题:编写函数,合并两个有序数组
目录 题目要求 代码实现 题目要求 nums1 和 nums2 是两个升序的整型数组,另外有两个整数 m 和 n 分别代表 nums1 和 nums2 中的元素个数 要求合并 nusm2 到nums1 中,使合并后的 nums1 同样按升序顺序排列 最终,合并后的数组不应由函数返…...
企业做网站营销/淘宝交易指数换算工具
1. 需求溯源 : MD_PEGGING_NODIALOG 2. 实时库存 : MD_STOCK_REQUIREMENTS_LIST_API 这个函数中MDPSX 和 MDEZX 是通过 MDPS 的 INDEX MDEZ-ALINE 来关联获取数据 3. MRP清单 :MD_MRP_LIST_API 4. 获取计划订单函数 BAPI_PLANNEDORDER_GE…...
北京京西建设集团网站/全网自媒体平台大全
在Android Studio中,假设你觉得某个快捷键太复杂,要想修改,怎么修改呢,首先要找到这个快捷键,但是Android Studio搜索快捷键有一个bug,就是你不能根据快捷键来搜索对应的功能点名称,这个时候有两…...
软件app开发培训/百度seo咋做
最近接到一个时间特别紧的抢票系统项目,只有10天时间,要面对6万高并发抢票,实现核心思路如下: 1.使用nginx限流,超过并发数,直接返回特定html页面 三种常见nginx限流方式为: 1)、l…...
做网站备案需要哪些材料/百度seo建议
服务器登录密码被人改 内容精选换一换登录Windows操作系统的弹性云服务器时,需使用密码方式登录。因此,用户需先根据创建弹性云服务器时使用的密钥文件,获取该弹性云服务器初始安装时系统生成的管理员密码(Administrator帐户或Cloudbase-init…...
英国人做愛无网站/百度知道客服电话人工服务
(文章出处不详,转自:http://blog.csdn.net/hairetz/article/details/4137000) C中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用…...
网站建设的公司有哪些方面/什么叫做seo
百度文库:https://wenku.baidu.com/view/99d39413f78a6529647d5344.html STM32关于使用定时器触发ADC转换的解决办法和详细说明 本人在使用STM32上的TIM2_CC2触发ADC转换的时候,发现始终调不出来,在网上找到了一些有价值的参考信息ÿ…...