当前位置: 首页 > news >正文

std::list

std::list是C++标准库中的一个序列容器,它提供了双向链表的功能。std::list允许在序列的任何位置高效地插入和删除元素,而不会引起其他元素的移动,这使得std::list在需要频繁插入和删除操作的场景中非常有用。

std::list的特性:

  • 双向链表:std::list存储的元素在内存中不是连续的,而是通过指针连接的节点
  • 不保证元素顺序:与std::vector不同,std::list不保证元素的物理存储顺序与声明顺序相同
  • 高效的插入和删除:可以在任意位置快速插入和删除元素(O(1)),而不需要移动其他元素;但由于其没有随机访问的能力,因此查找的速度较慢(O(n))
  • 模板类:std::list是一个模板类,可以存储任何类型的数据

std::list有如下一些成员函数:

  • std::list():默认构造一个空的链表;还可以拷贝构造和移动构造
  • operator =:赋值操作,用于将一个链表的内容赋给另一个链表
  • swap():交换两个链表的内容
  • front():访问链表的第一个元素
  • back():访问链表的最后一个元素
  • insert(const_iterator pos, const T& value):在指定位置插入一个元素
  • emplace(const_iterator pos, Args&&… args):在指定位置就地构造一个元素
  • erase(const_iterator pos):删除指定位置的元素
  • erase(const_iterator first, const_iterator last):删除指定范围内的元素
  • push_back():末尾添加一个元素
  • emplace_back():末尾就地构造一个元素
  • push_front():表头添加一个元素
  • emplace_front():表头就地构造一个元素
  • pop_back():删除末尾元素
  • pop_front():删除表头元素
  • size():返回链表中元素的数量
  • empty():检查链表是否为空
  • sort():对链表中的元素进行排序,默认按升序排列
  • reverse():反转链表中元素的顺序
  • splice():将一个链表的元素移动到另一个链表
// 创建一个双向链表,并进行初始化
std::list<int> lst = { 1, 2, 3, 4, 5 };  
for (auto value : lst) {std::cout << value << std::endl;  // 1 2 3 4 5
}// 拷贝构造,深拷贝
std::list<int> new_lst1(lst);  
for (auto value : new_lst1) {std::cout << value << std::endl;  // 1 2 3 4 5
}
std::cout << lst.size() << std::endl;  // 5// 移动构造
std::list<int> new_lst2(std::move(lst));  
for (auto value : new_lst2) {std::cout << value << std::endl;  // 1 2 3 4 5
}
std::cout << lst.size() << std::endl;  // 0// 赋值操作
std::list<int> new_lst3{3, 2, 1, 4, 5, 6, 7};
lst = new_lst3;
for (auto value : lst) {std::cout << value << std::endl;  // 3 2 1 4 5 6 7
}// 交换内容
lst.swap(new_lst1);
for (auto value : lst) {std::cout << value << std::endl;  // 1 2 3 4 5
}
for (auto value : new_lst1) {std::cout << value << std::endl;  // 3 2 1 4 5 6 7
}// 访问元素
std::cout << lst.front() << std::endl;  // 访问第一个元素,1
std::cout << lst.back() << std::endl;  // 访问最后一个元素,5// 插入元素
auto it = lst.begin();  // 获取迭代器,指向第一个元素
std::advance(it, 2);  // 将迭代器前移两个元素,指向第三个元素
lst.insert(it, 6);  // 在第三个元素位置插入新元素
for (auto value : lst) {std::cout << value << std::endl;  // 1 2 6 3 4 5
}
std::cout << *it << std::endl;  // 此时迭代器指向第四个元素3
lst.emplace(it, 7);  // 就地构造一个元素插入
for (auto value : lst) {std::cout << value << std::endl;  // 1 2 6 7 3 4 5
}// 删除元素
lst.erase(it);  // 删除指定位置元素,此时迭代器指向第五个元素3
for (auto value : lst) {std::cout << value << std::endl;  // 1 2 6 7 4 5
}
lst.erase(lst.begin(), lst.end());  // 删除指定范围的元素,左闭右开
std::cout << lst.size() << std::endl;  // 0// 末尾添加元素
lst.push_back(8);  // 末尾添加元素8
lst.push_back(9);  // 末尾添加元素9
lst.emplace_back(10);  // 就地构造末尾元素10
for (auto value : lst) {std::cout << value << std::endl;  // 8 9 10
}// 末尾删除元素
lst.pop_back();
for (auto value : lst) {std::cout << value << std::endl;  // 8 9
}// 表头添加元素
lst.push_front(7);  // 表头添加元素7
lst.push_front(6);  // 表头添加元素6
lst.emplace_front(5);  // 就地构造表头元素5
for (auto value : lst) {std::cout << value << std::endl;  // 5 6 7 8 9
}// 表头删除元素
lst.pop_front();
for (auto value : lst) {std::cout << value << std::endl;  // 6 7 8 9 
}// 排序
lst.push_back(4);
lst.push_back(1);
lst.sort();  // 默认按升序排列
for (auto value : lst) {std::cout << value << std::endl;  // 1 4 6 7 8 9 
}// 反转
lst.push_back(0);
lst.reverse();  // 反转元素顺序
for (auto value : lst) {std::cout << value << std::endl;  // 0 9 8 7 6 4 1
}// 合并
lst.splice(lst.begin(), new_lst1);  // 将new_lst1的元素合并到lst的第一个元素位置
for (auto value : lst) {std::cout << value << std::endl;  // 3 2 1 4 5 6 7 0 9 8 7 6 4 1
}

std::list的优点:

  • 高效的插入和删除:在任意位置插入和删除元素的时间复杂度为O(1)
  • 内存利用率:没有内存浪费,因为不需要像std::vector那样预留空间

std::list的缺点:

  • 访问效率低:不能像std::vector那样通过索引随机访问元素,访问特定元素可能需要O(n)的时间
  • 内存开销:由于需要存储额外的指针,内存开销比std::vector高

相关文章:

std::list

std::list是C标准库中的一个序列容器&#xff0c;它提供了双向链表的功能。std::list允许在序列的任何位置高效地插入和删除元素&#xff0c;而不会引起其他元素的移动&#xff0c;这使得std::list在需要频繁插入和删除操作的场景中非常有用。 std::list的特性&#xff1a; 双…...

opencv-rust 系列2: camera_calibration

opencv-rust 系列2: camera_calibration 前言: 这里只是opencv-rust自带示例的中文注解. 略微增加了一些代码也是我在调试时用到的. 说明: camera_calibration.rs是opencv-rust自带的示例, 在examples目录中可以找到,我增加了一些中文注释如下.如需运行可以在项目根目录执行命…...

JVM和GC案例详解

接上文JVM环境配置说明&#xff1a;上文博客 一、JVM远程连接设置 1. JMX方式连接(这种方式没有GC监控)&#xff0c;设置如下 2. 连接成功后可以查看基础配置参数(和服务器配置一致) 2. jstatd方式连接(这种方式没有CPU监控) 添加jstatd方式连接 双击Tomcat&#xff0…...

postgreSql下载安装

一、下载 官网&#xff1a;PostgreSQL: The worlds most advanced open source database 二、安装 1.找到.exe文件&#xff0c;双击安装 2.跟着安装向导操作 三、启动...

GPT-SOVIT模型部署指南

一、模型介绍 强大的小样本语音转换和文本转语音 WebUI。 具有以下特征&#xff1a; 零样本 TTS&#xff1a; 输入 5 秒的声音样本并体验即时文本到语音的转换。少量样本 TTS&#xff1a; 仅使用 1 分钟的训练数据对模型进行微调&#xff0c;以提高语音相似度和真实感。跨语…...

怎么定时发朋友圈?

要实现微信朋友圈的定时发布&#xff0c;可以采用以下几种方法&#xff1a; 1、 绑定QQ号并使用QQ空间定时功能&#xff1a; 于微信和QQ的紧密联系&#xff0c;可以通过绑定QQ号&#xff0c;利用QQ空间的定时发布功能来间接实现微信朋友圈的定时发布。首先&#xff0c;在QQ空…...

如何利用phpstudy创建mysql数据库

phpStudy诞生于2007年&#xff0c;是一款老牌知名的PHP开发集成环境工具&#xff0c;产品历经多次迭代升级&#xff0c;目前有phpStudy经典版、phpStudy V8&#xff08;2019版&#xff09;等等&#xff0c;利用phpstudy可以快速搭建一个mysql环境&#xff0c;接下来我们就开始吧…...

五、Linux之Vi和Vim编辑器

基本介绍 Vi Linux 系统会内置 vi 文本编辑 Vim 具有程序编辑的能力&#xff0c;可以看做是 Vi 的增强版本&#xff0c;可以主动的以字体颜色辨别语法的正确性&#xff0c;方便程序设计。 代码补完、编译及错误跳转等方便编程的功能特别丰富 常用的三种模式 正常模式 以 vim …...

git删除错误的commit

文章目录 1、git删除错误的commit2、.gitignore配置文件不生效的问题 1、git删除错误的commit git的流程如图&#xff1a; 当某次失误造成commit的版本有问题&#xff0c;需要回退到正常的版本修改后重新add。 首先通过git log查看commit提交记录&#xff0c;可以看到HEAD-…...

代码随想录算法训练营Day08 | 344.反转字符串、541. 反转字符串II、卡码网:54.替换数字

文章目录 344.反转字符串思路与重点 541. 反转字符串II思路与重点 卡码网&#xff1a;54.替换数字思路与重点 344.反转字符串 题目链接&#xff1a;344. 反转字符串 - 力扣&#xff08;LeetCode&#xff09;讲解链接&#xff1a;代码随想录 (programmercarl.com)状态&#xff…...

mysql锁之乐观锁、悲观锁、表锁、行锁、共享锁、排他锁

mysql锁之乐观锁、悲观锁、表锁、行锁、共享锁、排他锁 MySQL锁概述 锁是计算机协调多个进程或线程并发访问某一个资源的机制&#xff0c;在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资…...

【软件干货】Android应用进程如何保活?

​1.Android 应用进程保活方法介绍 在Android应用程序中&#xff0c;为了保证应用的正常运行和稳定性&#xff0c;有时需要对应用进程进行保活。以下是一些实现进程保活的方法&#xff1a; 1、使用前台服务(Foreground Service)&#xff1a;将服务调用startForeground()方法&…...

neo4j部署保姆级教程

由于公司是基于大数据架构的&#xff0c;让部署neo4j数据库&#xff0c;之前没有接触过&#xff0c;然后紧急学了一下&#xff0c;并且从网上找了一些教程&#xff0c;决定还是记录下来&#xff0c;后续有时间了会在出一篇使用教程 环境准备&#xff08;root用户&#xff09; …...

【STM32CubeMX开发】-2.2-TIM_输出一个PWM信号

目录 1 Tim定时器的时钟源 2 Tim定时器的配置 2.1 PWM配置 2.2 中断配置 3 生成代码 4 测试结果 结尾 1 Tim定时器的时钟源 TIM3的时钟来源自APB1 Timer clocks&#xff0c;时钟树上所有总线频率均设置为了STM32F0能达到的最高频率&#xff0c;此时APB1 Timer clocks …...

Ngx+Lua+Redis 快速存储POST数据

系统几万台设备有windows有安卓还有linux系统&#xff0c;每个设备三分钟就会向服务器post设备的硬件信息&#xff0c;数据格式json&#xff0c;后台管理界面只需要最新的数据&#xff0c;不需要历史数据&#xff0c;业务逻辑非常简单&#xff0c;PHP代码就几行&#xff0c;已经…...

go-delve的使用

go-delve的非交互使用方式&#xff1a; dlv要执行的命令文件&#xff1a;cmd.dlv goroutines exit 执行非交互命令&#xff1a; yes n | dlv --allow-non-terminal-interactivetrue attach $pid --init cmd.dlv --end--...

Python网络爬虫技术详解

Python网络爬虫技术详解 引言 网络爬虫&#xff08;Web Crawler&#xff09;&#xff0c;又称网络蜘蛛&#xff08;Web Spider&#xff09;或网络机器人&#xff08;Web Robot&#xff09;&#xff0c;是一种按照一定规则自动抓取互联网信息的程序或脚本。它们通过遍历网页链…...

Golang | Leetcode Golang题解之第474题一和零

题目&#xff1a; 题解&#xff1a; func findMaxForm(strs []string, m, n int) int {dp : make([][]int, m1)for i : range dp {dp[i] make([]int, n1)}for _, s : range strs {zeros : strings.Count(s, "0")ones : len(s) - zerosfor j : m; j > zeros; j--…...

算法刷题技巧

算法题&#xff1a;https://leetcode.cn/studyplan/top-100-liked/ 哈希表 使用哈希表&#xff0c;增删改查的时间复杂度均为O(1)。何时使用哈希表&#xff1f; 在某个区域内查找一个已知元素&#xff0c;可以使用哈希表作为这个区域根据一个特征对元素进行分类&#xff0c;特征…...

BMS、EMS PCS 简介

1 储能系统的构成 完整的电化学储能系统主要由电池组、电池管理系统&#xff08;BMS&#xff09;、能量管理系统&#xff08;EMS&#xff09;、储能变流器&#xff08;PCS&#xff09;以及其他电气设备构成。 在储能系统中&#xff0c;电池组将状态信息反馈给电池管理系统BMS&…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

若依项目部署--传统架构--未完待续

若依项目介绍 项目源码获取 #Git工具下载 dnf -y install git #若依项目获取 git clone https://gitee.com/y_project/RuoYi-Vue.git项目背景 随着企业信息化需求的增加&#xff0c;传统开发模式存在效率低&#xff0c;重复劳动多等问题。若依项目通过整合主流技术框架&…...

更新 Docker 容器中的某一个文件

&#x1f504; 如何更新 Docker 容器中的某一个文件 以下是几种在 Docker 中更新单个文件的常用方法&#xff0c;适用于不同场景。 ✅ 方法一&#xff1a;使用 docker cp 拷贝文件到容器中&#xff08;最简单&#xff09; &#x1f9f0; 命令格式&#xff1a; docker cp <…...