Series数据去重
目录
准备数据
Series数据去重
DataFrame数据和Series数据去重对比
在pandas中,Series.drop_duplicates(keep=, inplace=)方法用于删除Series对象中的重复值。
-
keep:-
决定保留哪些重复值。可以取以下三个值之一:
-
'first'(默认值):保留第一次出现的重复值。 -
'last':保留最后一次出现的重复值。 -
False:删除所有重复值。
-
-
-
inplace:-
这是一个布尔值参数。如果为
True,则直接在原始Series上进行修改,不会返回新的Series。如果为False(默认值),则会返回一个新的Series,原始的Series保持不变。
-
准备数据
import pandas as pd
df = pd.read_csv("../data/b_LJdata.csv")
df.head()

Series数据去重
1) 对 朝向 构成的 Series对象 去重, 保留第一条, 不影响原始对象
# 1 对 朝向 构成的 Series对象 去重, 保留第一条, 不影响原始对象
# 1.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 1.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='first', inplace=False)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

2) 对 朝向 构成的 Series对象 去重, 保留最后一条, 不影响原始对象
# 2 对 朝向 构成的 Series对象 去重, 保留最后一条, 不影响原始对象
# 2.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 2.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='last', inplace=False)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

3) 对 朝向 构成的 Series对象 去重, 删除所有重复, 不影响原始对象
# 3 对 朝向 构成的 Series对象 去重, 删除所有重复, 不影响原始对象
# 3.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 3.2 去重
new_series = chaoxiang_series.drop_duplicates(keep=False, inplace=False)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

4) 对 朝向 构成的 Series对象 去重, 保留第一条, 影响原始对象
# 4 对 朝向 构成的 Series对象 去重, 保留第一条, 影响原始对象
# 4.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 4.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='first', inplace=True)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

5) 对 朝向 构成的 Series对象 去重, 保留最后一条, 影响原始对象
# 5 对 朝向 构成的 Series对象 去重, 保留最后一条, 影响原始对象
# 5.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 5.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='last', inplace=True)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

6) 对 朝向 构成的 Series对象 去重, 删除所有重复, 影响原始对象
# 6 对 朝向 构成的 Series对象 去重, 删除所有重复, 影响原始对象
# 6.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 6.2 去重
new_series = chaoxiang_series.drop_duplicates(keep=False, inplace=True)
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

7) 简化
# 7 简化
# 7.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)# 7.2 去重
new_series = chaoxiang_series.drop_duplicates()
print('==================')
print(new_series)
print('==================')print('------------ 去重后 ----------------')
print(chaoxiang_series)

DataFrame数据和Series数据去重对比
DataFrame数据去重,最终呈现的是数据集合
temp_df = df.head().copy()# 对df所有列去重, 当前df没有重复的行数据
print(temp_df.drop_duplicates())
print("=================================")
# 根据指定列对df去重, 默认保留第一条数据
# 第1行和第5行、第2行和第3行重复
print(temp_df.drop_duplicates(subset=['户型', '朝向']))

Series数据去重,最终呈现是一列数据
temp_df = df.head().copy()# 默认保留第一条数据
print(temp_df.drop_duplicates())
print("===========================")
print(temp_df[['户型','朝向']].drop_duplicates())

相关文章:
Series数据去重
目录 准备数据 Series数据去重 DataFrame数据和Series数据去重对比 在pandas中,Series.drop_duplicates(keep, inplace)方法用于删除Series对象中的重复值。 keep: 决定保留哪些重复值。可以取以下三个值之一: first(默认值&…...
Python语言核心12个必知语法细节
1. 变量和数据类型 Python是动态类型的,变量不需要声明类型。 python复制代码 a 10 # 整数 b 3.14 # 浮点数 c "Hello" # 字符串 d [1, 2, 3] # 列表 2. 条件语句 使用if, elif, else进行条件判断。 python复制代码 x 10 if x > 5: print(&q…...
解决ImageIO无法读取部分JPEG格式图片问题
解决ImageIO无法读取部分JPEG格式图片问题 问题描述 我最近对在线聊天功能进行了一些内存优化,结果在回归测试时,突然发现有张图片总是发送失败。测试同事把问题转到我这儿来看,我仔细检查了一下,发现是上传文件的接口报错&#…...
使用three.js 实现蜡烛效果
使用three.js 实现蜡烛效果 import * as THREE from "three" import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.js"var scene new THREE.Scene(); var camera new THREE.PerspectiveCamera(60, window.innerWidth / window.in…...
手动在Linux服务器上部署并运行SpringBoot项目(新手向)
背景 当我们在本地开发完应用并且测试通过后,接着就要部署在服务器上启动。 步骤 1.先用maven将SpringBoot应用当成jar包 2.生成jar文件并复制此文件 3.xshell远程连接linux服务器,在xftp将文件粘贴到linux服务器,这里我放在/usr/local…...
自媒体短视频如何制作?
从0到1打造爆款短视频!300条视频创作经验分享,助你玩转自媒体! 想用短视频玩转自媒体却不知道从何下手?别担心!从21年开始接触短视频的我,断断续续创作了300多条视频,踩过不少坑,也收获了一些心得,核心秘诀就是:账号内容垂直化 + 明确受众群体! 我将从主题确定、脚本…...
2024年河南省职业技能竞赛(网络建设与运维赛项)
模块二:网络建设与调试 说明: 1.所网络设备在创建之后都可以直接通过 SecureCRT 软件 telnet 远程连接操作。 2.要求在全员化竞赛平台中保留竞赛生成的所有虚拟主机。 3.题目中所有所有的密码均为 Pass-1234,若未按照要求设置,涉 …...
git--git reset
HEAD 单独一个HEAD eg:git diff HEAD 表示当前结点。 HEAD~ HEAD~只处理当前分支。 注意:master分支的上一个结点是tmp分支的所在的结点fc11b74, 79f109e才是master的第二个父节点。 HEAD~ 当前结点的父节点。 HEAD~1 当前结点的父节点。 HEAD~n 当前结点索…...
Spring Boot的实用内置功能详解
Spring Boot作为一款备受欢迎的Java框架,以其简洁、高效和易用的特点,赢得了广大开发者的青睐。其内置的多种功能更是为开发者提供了极大的便利,本文将详细介绍Spring Boot中记录请求数据、请求/响应包装器、特殊的过滤器Filter以及Controlle…...
撸猫变梳毛?怎么解决猫咪掉毛问题?好用的宠物空气净化器推荐
秋风一吹,新一轮的猫咪换毛季又到了,这也意味着我失去了撸猫自由。我每天的治愈方式就是下班撸猫,抚摸着柔软的毛发,好像一天的烦恼都消除了。可是一到换毛季,猫还没撸两下,先从猫咪身上带下一手毛…...
人声分离免费软件,六款好用软件处理音乐更轻松!
在这个数字化音乐时代,无论是专业音乐人还是音乐爱好者,都渴望在创作与编辑过程中拥有更多便捷高效的工具。人声分离技术,作为音乐后期制作中的一项关键技术,能够精准地将歌曲中的人声与伴奏分离,极大地拓宽了音乐创作…...
数据分析Power BI设置万为单位的数据
玩过Power BI的同学都知道,power BI在度量值设置单位里,唯独没有万这个单位,但是我们可以自定义,操作过程如下: 1.用DAX新建单位表 单位 SELECTCOLUMNS( { ( "元", 1), ("万",10000), ("千…...
(AI 生成) 新时代游击方式: 利用 “灵活就业“ 红利
注意: 本文内容为 AI 大模型生成, 仅供参考. 提示词: 写一篇短文, 500 字左右, 标题为: 新时代游击方式: 利用 “灵活就业” 红利 1 豆包 《新时代游击方式:利用“灵活就业”红利》 在新时代的大舞台上,“灵活就业”犹如一块熠熠生辉的宝藏,…...
Unity UndoRedo(撤销重做)功能
需求 撤销与重做功能 思考 关于记录的数据的两点思考: 记录操作记录影响显示和逻辑的所有数据 很显然这里就要考虑取舍了: 记录操作 这种方案只需要记录每一步的操作,具体这个操作要怎么渲染和实现出来完全需要自己去实现,这…...
28条有关人工智能的名言
当谈到人工智能(AI)的潜力和潜在风险,以及无人类干预的机器学习和推理过程时,目前尚存在许多不同的观点。 只有时间会告诉我们,这些语录中哪一条是最接近未来的真实情况的。在我们尚未到达目的地之前,想一想…...
搞机器视觉项目看不起搞机器视觉培训的,实际上怎么样
搞机器视觉项目第一要务就是验收回款,往往欠款的非常严重,多数还要打通人际关系需要大量的成本。大多数机器视觉检测项目具有一定的风险,客户要求不明确,技术评估不充分,往往伴随着失败的可能性。所以做项目又累又担风…...
使用Jenkins部署项目
部署中的痛点 为什么要用Jenkins?我说下我以前开发的痛点,在一些中小型企业,每次开发一个项目完成后,需要打包部署,可能没有专门的运维人员,只能开发人员去把项目打成一个exe包,可能这个项目已…...
【机器学习与神经网络荣获诺贝尔奖】科学边界的扩展及技术革新
【机器学习与神经网络荣获诺贝尔奖】科学边界的扩展及技术革新 1)科学交叉融合的体现2)方法论的创新3)社会影响的考量 一、机器学习与神经网络的发展前景1)生产制造领域2)金融领域3)医疗领域 二、机器学习和…...
Javascript扩展符号(...)使用说明
在 ES6 中,扩展运算符(spread operator)... 可以用于在函数调用、数组字面量或对象字面量中展开数组或对象。以下是扩展运算符的一些常见用法: 1. 在函数调用中使用扩展运算符 扩展运算符可以在函数调用时展开数组或对象&#x…...
giugughk
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话: 知不足而奋进,望远山而前行&am…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
