自注意力机制self-attention中的KV 缓存
在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。
1. KV 缓存的背景
在 Transformer 模型的推理阶段(例如在机器翻译、文本生成等任务中),每生成一个新的 token 时,模型需要重新计算该位置的自注意力分数。由于自注意力机制要求当前查询(Q)与整个输入序列中的键(K)和值(V)进行交互,随着序列长度的增长,计算复杂度会增加。
如果在生成序列时每个步骤都重新计算之前的 K 和 V 矩阵,这会带来较大的冗余计算。KV 缓存就是为了解决这一问题而引入的。
2. KV 缓存的含义
KV 缓存指的是在推理过程中,把先前步骤计算得到的 Key(K)和 Value(V)矩阵 缓存 起来,避免在生成新 token 时重复计算整个序列的 K 和 V。每生成一个新 token,只需要计算当前这个 token 的查询向量(Q)与之前缓存的 K 和 V 进行交互,而不需要重新计算之前的 K 和 V。
3. KV 缓存的工作原理
推理阶段:
在生成文本时,Transformer模型是按步生成的(Auto-regressive generation),例如 GPT 模型。在生成每个新 token 时:
- 第一步:模型会根据输入的初始序列计算 K 和 V 矩阵,并存储这些矩阵作为缓存。
- 后续步骤:当模型生成下一个 token 时,它只需要计算当前这个 token 的 Q 矩阵,然后直接与缓存中的 K 和 V 进行交互计算。这样就避免了重新计算之前所有 token 的 K 和 V,从而提高了生成速度。
缓存更新阶段:
随着模型生成新 token,新的 K 和 V 也会加入缓存。缓存中保持了当前序列的所有 K 和 V 信息,保证下一步生成时可以继续使用。
4. KV 缓存的优势
- 降低计算复杂度:缓存机制使得每次生成新 token 时,只需要计算新的查询向量(Q),而不必重新计算整个序列的 K 和 V,从而降低了时间复杂度,特别是在长序列生成中显得尤为重要。
- 减少冗余计算:每次只需更新少量的 KV 信息,而不是重复计算先前的 K 和 V。
- 提升推理效率:尤其是在大模型(如 GPT、T5 等)的应用场景中,通过缓存可以大幅加速推理,提升生成速度。
5. KV 缓存的应用场景
- 文本生成任务:如 GPT 系列模型、ChatGPT 等生成模型。在逐步生成每一个 token 时,KV 缓存可以加速序列生成,避免冗余计算。
- 翻译任务:在翻译过程中,生成每一个目标语言的 token 时,利用 KV 缓存可以避免重新计算源语言部分的 K 和 V。
- 长序列处理:对于长文本或长时间序列数据(如音频、视频分析),KV 缓存可以避免随着序列增长带来的计算量爆炸,极大地提升处理速度。
6. 示例:GPT中的KV缓存
在 GPT 模型生成文本时,例如生成句子 “The cat is on the mat”,在生成第一个单词 “The” 的时候,模型会计算 “The” 的 Q、K、V 并缓存起来。在生成下一个单词 “cat” 时,模型只需要计算 “cat” 的 Q,并利用之前缓存的 “The” 的 K 和 V 来计算自注意力分数。依次类推,生成每一个新 token 时,都利用已经缓存的 K 和 V,从而减少不必要的重复计算。
总结:
KV 缓存在自注意力机制中的作用是在推理阶段缓存之前计算过的 Key 和 Value 矩阵,避免在生成新 token 时重复计算,显著提升推理效率,特别是在长序列生成任务中效果明显。这种缓存机制是大模型推理阶段提高性能的关键优化之一。
相关文章:
自注意力机制self-attention中的KV 缓存
在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。 1. KV 缓存的背景 在 Trans…...
前端库--nanoid(轻量级的uuid)
文章目录 定义:生成方式:现实使用:NanoID 只有 108 个字节那么大NanoID更安全NanoID它既快速又紧凑 使用步骤1.安装nanoid包2.引入使用3.使用4.自定义字母 定义: UUID 是 通用唯一识别码(Universally Unique Identifierÿ…...
计算机基础-什么是网络端口?
网络端口可以想象成一个大型公寓楼的邮箱。每个公寓楼(这里指的是一个计算机或服务器)有很多个邮箱(即网络端口),每个邮箱都有一个独一无二的编号(端口号)。当一封信(网络数据包&…...
力扣动态规划基础版(斐波那契类型)
70. 爬楼梯https://leetcode.cn/problems/climbing-stairs/ 70.爬楼梯 方法一 动态规划 考虑转移方程和边界条件: f(x) f(x -1) f(x - 2);f(1) 1;f&…...
Java重修笔记 InetAddress 类和 Socket 类
InetAddress 类相关方法 1. 获取本机 InetAddress 对象:getLocalHost public static InetAddress getLocalHost() throws UnknownHostException 返回值:本地主机的名字和地址 异常:UnknownHostException - 如果本地主机名无法解析成地址 2…...
秋招突击——8/6——万得数据面试总结
文章目录 引言正文面经整理一1、讲一下java的多态,重载,重写的概念,区别2、说一下Java的数组,链表的结构,优缺点3、创建java线程的方式有哪些,具体说说4、创建线程池呢、每个参数的意义5、通过那几种方式保…...
STM32定时器
目录 STM32定时器概述 STM32基本定时器 基本定时器的功能 STM32基本定时器的寄存器 STM32通用定时器 STM32定时器HAL库函数 STM32定时器概述 从本质上讲定时器就是“数字电路”课程中学过的计数器(Counter),它像“闹钟”一样忠实地为处…...
第七课 Vue中的v-for遍历指令
Vue中的v-for遍历指令 v-for用于对象遍历(数组/JSON),渲染数据列表 基础示例: <div id"app"><ul><li v-for"val in arr">{{val}}</li></ul></div><script>new V…...
【NTN 卫星通信】卫星通信的专利
1 概述 好久没有看书了,最近买了本讲低轨卫星专利的书,也可以说是一个分析报告。推荐给喜欢的朋友。 2 书籍截图 图1 封面 图2 波音低轨卫星专利演进 图3 低轨卫星关键技术专利发展阶段 图4 第一页 3 参考文献 产业专利分析报告–低轨卫星通信技术...
vue3 element table 插槽外的数据更新,插槽内的数据未更新。
在使用element table组件时候,有时候需要对table内部的header插槽进行单独的列的数据操作,比如在列头增加一个筛选功能,对指定范围的值进行一个筛选,需要对input的值进行v-model的绑定,对绑定的值进行清空时候…...
飞凌嵌入式FET527N-C核心板已适配OpenHarmony4.1
近期,飞凌嵌入式为FET527N-C核心板适配了OpenHarmony4.1系统——进一步提升了核心板的兼容性、稳定性和安全性。 OpenHarmony4.1在应用开发方面展现了全新的开放能力,以更加清晰的逻辑和场景化视角提供给开发者丰富的API接口,应用开发能力得…...
CVPR 2024最佳论文候选-pixelSplat论文解读
目录 一、概述 二、相关工作 1、单场景下的视角合成 2、基于先验的三维重建和视图合成 3、多视图几何测量 三、3DGS的缺点 1、容易陷入最小值 2、需要大量输入图像 3、尺度模糊性 四、pixelSplat 1、解决尺度模糊性(深度信息生成) 2、编码器…...
在Android中如何切割一张图片中的不规则“消息体/图片/表情包等等”?
在Android应用中,判断一张图片中“消息体”的大小,可以通过图像处理技术来实现。主要的步骤包括:将图像转换为灰度图,进行二值化处理,接着使用轮廓检测或边缘检测来识别消息体的边界,最后计算消息体的大小。…...
Jenkins+Ant+Jmeter接口自动化集成测试
🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一、Jenkins安装配置 1、安装配置JDK1.6环境变量; 2、下载jenkins.war,放入C:\jenkins目录下,目录位置随意; J…...
JavaSE——集合4:List接口实现类—LinkedList
目录 一、LinkedList的全面说明 二、LinkedList的底层操作机制 (一)LinkedList添加结点源码 (二)LinkedList删除结点源码 三、LinkedList常用方法 四、ArrayList与LinkedList的选择 一、LinkedList的全面说明 LinkedList底层实现了双向链表和双端队列的特点可以添加任意…...
FPGA图像处理之三行缓存
文章目录 一、前言二、FPGA实现三行缓存的架构三、Verilog代码实现四、仿真验证五、输入图像数据进行仿真验证 一、前言 在 FPGA 做图像处理时,行缓存是一个非常重要的一个步骤,因为图像输入还有输出都是一行一行进行的,即处理完一行后再处理…...
10月15日,每日信息差
第一、《哈利・波特与魔法石》在中国内地总票房突破 3 亿元,包括 2002 年首映的 5600 万,2020 年重映的 1.923 亿,以及 2024 年重映的 5170 万。 第二、全国铁路实施新货物列车运行图,增开城际班列至 131 列,多式联运…...
4G、5G通信中,“网络侧“含义
在5G通信中,"网络侧"这个术语可以指代不同的网络元素,具体取决于上下文。通常,网络侧可以包括以下两个主要部分: 基站(gNB): 基站是无线接入网(RAN)的一部分&a…...
spring boot核心理解-各种starter
理解 Spring Boot 的 Starter 机制以及如何选择和使用各种 starter,是开发 Spring Boot 应用的重要一环。Spring Boot Starter 是一组方便的依赖组合,用于简化 Spring 项目中的依赖管理。它们可以帮助开发者快速引入所需的库和自动配置,从而加…...
解决海外社媒风控问题的工具——云手机
随着中国企业逐步进入海外市场,海外社交媒体的风控问题严重影响了企业的推广效果与账号运营。这种背景下,云手机作为一种新型技术解决方案,正日益成为企业应对海外社媒风控的重要工具。 由于海外社媒的严格监控,企业经常面临账号流…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...
Django RBAC项目后端实战 - 03 DRF权限控制实现
项目背景 在上一篇文章中,我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统,为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...
