当前位置: 首页 > news >正文

深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务

引言

随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端的深度学习模型对其进行分类,并返回分类结果。

环境搭建

首先,确保安装了以下Python库:

  • Flask:用于构建Web应用。
  • PyTorch:用于加载和运行深度学习模型。
  • torchvision:用于图像处理和加载预训练模型。
  • PIL:用于图像处理。

1. 初始化Flask应用

import io
import flask
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torchvision import transforms, models# 初始化Flask app
app = flask.Flask(__name__)# 创建一个新的Flask应用程序实例
# __name__参数通常被传递给FasK应用程序来定位应用程序的根路径,这样FlasK就可以知道在哪里找到模板、静态文件等。
# 总体来说app = flask.Flask(__name_)是FLaSK应用程序的起点。它初始化了一个新的FLaSK应用程序实例。为后续添加路由、配置等莫定

2. 加载模型

为了方便,我们将预训练好的ResNet18模型,保存在一个名为best.pth的检查点文件中。我们将加载这个模型,并准备好用于推理。

def load_model():"""Load the pre-trained model, you can use your model just as easily."""global model# 加载resnet18网络。ResNet(残差网络)是一种深度学习架构,设计用于解决深层神经网络中的梯度消失问题。model = models.resnet18()# num_ftrs 被赋值为模型全连接层(fc)的输入特征数量。num_ftrs = model.fc.in_featuresmodel.fc = nn.Sequential(nn.Linear(num_ftrs, 102))  # 类别数自己根据自己任务来# print(model)#导入最优模型#这行代码实际上是加载了一个预先训练好的模型的权重。# torch.load('best.pth') 会加载保存在 best.pth 文件中的模型检查点,# 通常这个检查点包含模型的状态字典(state dict),即模型所有层的权重和偏置。# model.load_state_dict(checkpoint['state_dict']) 会将加载的状态字典应用到我们的模型上,使模型具有之前训练时学到的参数。checkpoint = torch.load('best.pth')model.load_state_dict(checkpoint['state_dict'])# 将模型指定为测试格式model.eval()# 是否使用gpuif use_gpu:model.cuda()

3. 预处理图像

为了使图像符合模型的要求,我们需要对其进行预处理,包括调整大小、转换为张量以及标准化。

def prepare_image(image, target_size):# 检查输入图像的颜色模式是否为 RGB。如果不是,则将其转换为 RGB 模式。if image.mode != 'RGB':image = image.convert('RGB')# Resize the input image and preprocess it.(按照所使用的模型将输入图片的尺寸修改,并转为tensor)# 使用 transforms.Resize 对象将图像调整为目标尺寸 target_size。image = transforms.Resize(target_size)(image)# 使用 transforms.ToTensor() 将图像转换为 PyTorch 的 Tensor 类型。image = transforms.ToTensor()(image)# Convert to Torch, Tensor and normalize. mean与std# 对图像张量进行标准化处理。# 标准化的参数 [0.485, 0.456, 0.406] 是均值,代表每个颜色通道(红、绿、蓝)的平均值;# [0.229, 0.224, 0.225] 是标准差,代表每个颜色通道的标准差。image = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(image)# Add batch_size axis 增加一个维度,用于按batch测试本次这里一次测试一张image = image[None]if use_gpu:image = image.cuda()  # return torch.tensor(imagereturn torch.tensor(image)

4. 设置路由和处理请求

使用Flask设置路由,并处理POST请求中的图像数据。

# 定义了一个名为 predict 的视图函数,并通过装饰器 @app.route 绑定了路由 /predict,允许该路由接收 HTTP POST 请求。
@app.route("/predict", methods=["POST"])
def predict():# 做一个标志,刚开始无图像传入时为false,传入图像时为truedata = {"success": False}if flask.request.method == 'POST':  # 检查请求的方法是否为 POSTif flask.request.files.get("image"):  # 判断是否为图像image = flask.request.files["image"].read()  # 将收到的图像进行读取,内容为二进制image = Image.open(io.BytesIO(image)) # 将这个二进制字符串转换为一个 PIL 图像对象。# 利用上面的预处理函数将读入的图像进行预处理image = prepare_image(image, target_size=(224, 224))# 将预处理后的图像输入到模型中,并得到一个未归一化的输出向量。# 使用 F.softmax 函数将这个输出向量转换为概率分布,这表示模型对于每个类别的预测概率。preds = F.softmax(model(image), dim=1)  # 得到各个类别的概率# cpu().data 确保结果在 CPU 上,并且不包含梯度信息。dim=1 表示沿着列方向查找最大值。results = torch.topk(preds.cpu().data, k=3, dim=1)  # 概率最大的前3个结果# torch.topk用于返回输入张量中每行最大的k个元素及其对应的索引# 将结果从 PyTorch 张量转换为 NumPy 数组,以便更容易地处理。results[0] 包含了概率值,而 results[1] 包含了类别索引。results = (results[0].cpu().numpy(), results[1].cpu().numpy())# 将data字典增加一个key,value,其中value为ist格式data['predictions'] = list()for probability, label in zip(results[0][0], results[1][0]):# Label name =idx2labellstr(label)]r = {"label": str(label), "probability": float(probability)}# 将预测结果添加至data字典data['predictions'].append(r)# Indicate that the reguest was a success.data["success"] = Truereturn flask.jsonify(data)  # 将最后结果以json格式文件传出,并返回给客户端。

5. 启动服务

最后,在主入口处启动Flask服务,并加载模型。

if __name__ == '__main__':print("Loading PyTorch model and Flask starting server ...")print("Please wait until server has fully started")load_model() #加载模型app.run(host='192.168.24.45', port=5012) #启动服务器,IP地址,端口

我们点击运行即可启动服务器,保持程序运行客户端即可通过ip地址和端口访问

接口客户端实现

在上一部分中,我们完成了基于Flask和PyTorch的图像分类Web服务的搭建。接下来,我们将继续探讨如何编写客户端代码来与该服务进行交互。通过编写一个简单的Python脚本来发送HTTP请求,我们可以测试我们的Web服务是否正常工作。

客户端代码实现

为了测试我们的图像分类服务,我们需要编写一段代码来模拟客户端的行为。这段代码将负责向服务端发送包含图像的POST请求,并接收返回的分类结果。

import requestsflask_url = 'http://192.168.24.45:5012/predict'# 定义一个名为 predict_result 的函数,该函数接受一个参数 image_path,表示要发送给 Flask 应用的图像文件的路径。
def predict_result(image_path):# 使用 open 函数以二进制模式 ('rb') 打开图像文件,并读取其内容。image = open(image_path, 'rb').read()# 将图像内容包装到一个字典 payload 中,键为 'image',值为图像的二进制内容。payload = {'image': image}# 使用 requests.post 方法发送一个 POST 请求到 Flask 应用,其中 files 参数用于上传文件。# files=payload 表示将 payload 字典中的内容作为文件上传。r = requests.post(flask_url, files=payload).json()  # .json() 方法将响应内容解析为 Python 字典形式,方便后续处理。if r['success']:  # 检查响应中的 success 键是否为 True。如果为 True,则意味着请求成功,并且会打印出预测结果。for (i, result) in enumerate(r['predictions']): print('{}.预测类别为{}:的概率:{}'.format(i + 1, result['label'], result['probability']))print('OK')  # 预测结果存储在 r['predictions'] 列表中,每个预测结果都是一个字典,包含类别标签 ("label") 和概率 ("probability")。else:  # 失败打印print('Request failed')
if __name__ == '__main__':predict_result('../data/6/image_07162.jpg')

预测图像

本次实验随机采用一张花的图片上传到到服务端


预测结果

客户端访问记录

当我们通过客户端访问服务端时,可通过后台查看访问记录

总结

通过以上步骤,我们构建了一个简单的图像分类Web服务。用户可以通过发送POST请求并将图像作为附件上传,然后服务端会对图像进行分类,并返回最有可能的三个类别及其概率。这种服务可以用于各种场合,如在线图像识别、产品分类等。

希望这篇文章能帮助你了解如何使用Flask和PyTorch快速搭建一个图像分类的服务,并激发你在实际项目中的应用。

相关文章:

深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务

引言 随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端…...

MFC工控项目实例二十六创建数据库

承接专栏《MFC工控项目实例二十五多媒体定时计时器》 用选取的型号为文件名建立文件夹,再在下面用测试的当天的时间创建文件夹,在这个文件中用测试的时/分/秒为数据库名创建Adcess数据库。 1、在StdAfx.h文件最下面添加代码 #import "C:/Program F…...

springmvc源码流程解析(一)

Springmvc 是基于servlet 规范来完成的一个请求响应模块,也是spring 中比较大的一个 模块,现在基本上都是零xml 配置了,采用的是约定大于配置的方式,所以我们的springmvc 也是采用这种零xml 配置的方式。 要完成这种过程&#xff…...

【论文阅读】SRGAN

学习资料 论文题目:基于生成对抗网络的照片级单幅图像超分辨率(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network)论文地址:https://arxiv.org/abs/1609.04802代码:GitHub - xiph/daala: Modern video compression for the interne…...

kubelet PLEG实现

概述 kubelet的主要作用是确保pod状态和podspec保持一致,这里的pod状态包括pod中的container状态,个数等。 为了达到这个目的,kubelet需要从多个来源watch pod spec的变化,并周期从container runtime获取最新的container状态。比如…...

leetcode49:字母异位词分组

给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "nat", &…...

一个将.Geojson文件转成shapefile和kml文件的在线页面工具(续)

接上一专栏:这个网址有个bug,每个月只能免费转3次,这等于没用! 一个将.Geojson文件转成shapefile和kml文件的在线页面工具_geojson转shp在线-CSDN博客 下面这个网址实测可以免费多次转换! Quickmaptools : Geojson to…...

论文阅读(二十四):SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

文章目录 Abstract1.Introduction2.Shuffle Attention3.Code 论文:SA-Net:Shuffle Attention for Deep Convolutional Neural Networks(SA-Net:置换注意力机制)   论文链接:SA-Net:Shuffle Attention for Deep Convo…...

基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】

背景及意义 智能道路裂缝检测与分析系统在基础设施维护和安全监测方面起着非常重要的作用。道路裂缝是道路衰老和破坏的早期迹象,若不及时发现和修复,可能会导致道路结构的进一步恶化,甚至引发安全事故。本文基于YOLOv8深度学习框架&#xff…...

YOLOv11入门到入土使用教程(含结构图)

一、简介 YOLOv11是Ultralytics公司在之前的YOLO版本上推出的最新一代实时目标检测器,支持目标检测、追踪、实力分割、图像分类和姿态估计等任务。官方代码:ultralytics/ultralytics:ultralytics YOLO11 🚀 (github.com)https://g…...

python 爬虫抓取百度热搜

实现思路: 第1步、在百度热搜页获取热搜元素 元素类名为category-wrap_iQLoo 即我们只需要获取类名category-wrap_为前缀的元素 第2步、编写python脚本实现爬虫 import requests from bs4 import BeautifulSoupurl https://top.baidu.com/board?tabrealtime he…...

3.1 > Linux文件管理(基础版)

Linux 的命名规则 相对于其他操作系统(如 Windows )来说,Linux 的命名规则并没有那么多条条框框,还算是比较自由的。在 Linux 中,它的命名规则有如下几点要求: 首先是大小写敏感:例如在 Linux…...

CTFHUB技能树之文件上传——MIME绕过

开启靶场&#xff0c;打开链接&#xff1a; 直接指明是MIME验证 新建04MIME.php文件&#xff0c;内容如下&#xff1a; <?php echo "Ciallo&#xff5e;(∠・ω< )⌒★";eval($_POST[pass]);?> &#xff08;这里加了点表情&#xff0c;加带点私货&#x…...

4种鼓励创业创新的方法

随着市场趋于饱和&#xff0c;许多企业&#xff0c;尤其是初创企业&#xff0c;很难在竞争中保持领先地位。技术为企业彻底改变其营销和管理策略铺平了道路。另一个经过实践检验的成功渗透特定市场的方法是在办公室内部激发创新&#xff0c;从员工到品牌皆如此。 那么究竟如何…...

C#中的LINQ之美:优雅的数据查询与操作

LINQ&#xff08;Language Integrated Query&#xff0c;语言集成查询&#xff09;是C#中一个强大的工具&#xff0c;它将查询功能直接融入到语言中&#xff0c;使开发者能够以一种更直观、更接近自然语言的方式来操作数据。LINQ不仅能极大地提高开发效率&#xff0c;而且让代码…...

深入浅出:深度学习模型部署全流程详解

博主简介&#xff1a;努力学习的22级计算机科学与技术本科生一枚&#x1f338;博主主页&#xff1a; Yaoyao2024往期回顾&#xff1a; 【论文精读】PSAD&#xff1a;小样本部件分割揭示工业异常检测的合成逻辑每日一言&#x1f33c;: 生活要有所期待&#xff0c; 否则就如同罩在…...

git已经commit,但未push想撤回提交

git已经commit,但未push想撤回提交 1、重置到上一个提交2、只想撤回提交但保留修改3、操作方法 工作区(本地)、暂存区(commit)、版本库(远程) 1、重置到上一个提交 git reset --hard HEAD~1 这会将当前分支重置到上一个提交&#xff0c;丢弃你的最新提交和所有未保存的修改。 …...

SSL VPN调试思路及配置指南

一、概述 本指南旨在详细阐述外部人员通过SSL VPN访问内部资源的调试过程与配置步骤。SSL VPN被单臂部署在核心交换机上&#xff0c;并通过外网防火墙将SSL VPN的443端口映射至外部网络&#xff0c;以实现安全的远程访问。 二、配置步骤 系统管理 网络设置&#xff1a; 配置接…...

多租户架构的全景分析(基本概念、实现策略、资源管理和隔离、数据安全与隔离、性能优化、扩展性与升级、案例研究)

文章目录 1. 多租户的基本概念2. 多租户的实现策略2.1 独立数据库模式2.2 共享数据库-独立Schema模式2.3 共享数据库-共享Schema模式 3. 资源管理和隔离4. 数据安全与隔离5. 性能优化6. 扩展性与升级7. 案例研究总结 多租户架构在云计算和SaaS应用中越来越流行&#xff0c;因为…...

TDengine数据库整合MyBatis实现SpringBoot项目CRUD

TDengine数据库整合MyBatis实现SpringBoot项目CRUD 官网&#xff1a; https://docs.taosdata.com/引入依赖 <!-- mybatis版本必须与druid版本兼容&#xff0c;否则无法创建DataSource --><dependency><groupId>com.alibaba</groupId><artifactId&…...

1493. 删除一个元素以后全为1的最长子数组 - 题解

> Problem: 1493. 删掉一个元素以后全为 1 的最长子数组 1493. 删除一个元素以后全为1的最长子数组 - 题解 问题描述 给定一个二进制数组 nums&#xff0c;你需要从中删除一个元素。请你在删掉元素后返回最长的且只包含 1 的非空子数组的长度。如果不存在这样的子数组&…...

密钥管理方法DUKPT的OpenSSL代码实现Demo

目录 1 DUKPT简介 2 基本概念 2.1 BDK 2.2 KSN 2.3 IPEK 2.4 FK 2.5 TK 3 工作流程 3.1 密钥注入过程 3.2 交易过程 3.3 BDK派生IPEK过程 3.4 IPEK计算FK过程 4 演示Demo 4.1 开发环境 4.2 功能介绍 4.3 下载地址 5 在线工具 6 标准下载 1 DUKPT简介 DUKPT&a…...

计算机视觉中的坐标变换

1.概述 高级驾驶辅助系统&#xff08;ADAS&#xff09;领域&#xff0c;存在多种常用的坐标系&#xff1a;LiDAR 坐标系、车辆坐标系、相机坐标系、图像坐标系等。因为和这些坐标系频繁打交道&#xff0c;本文对点的旋转与坐标系旋转等变换给出直观推导与说明。 2.坐标点平移…...

C++——NetWork

1.network.h #include <iostream> #include <winsock2.h> #include <cstring>class NetWork {int type; // 通信协议类型int sock_fd; // socket 描述符sockaddr_in addr; // 通信地址int addrlen; // 通信地址字节数bool issvr; …...

iOS -- 代码优化

目录 1. filter 优化2. return 优化案例1案例2 3. for循环优化案例1案例2 4. 枚举 优化5. 未完待续…… 1. filter 优化 原代码 if var vcs vcs {for vc in vcs {if vc is XXLoginViewController {if let index vcs.firstIndex(of: vc) {vcs.remove(at: index)}} }修改后 v…...

docker配置普通用户访问

文章目录 &#x1f315;方法一&#xff1a;让所有用户都可以使用docker&#x1f319;创建docker用户组&#x1f319;把当前用户加入docker用户组&#x1f319;单独把某个用户加入docker用户组&#x1f319;更新激活docker用户组&#x1f319;验证不需要sudo执行docker命令&…...

php后端学习,Java转php

遇到前后端跨域 php解决跨域问题可以加上下面的代码&#xff1a; header(“Access-Control-Allow-Origin:*”); 并且查看自己的数据库信息是否连接成功。 从Java转php 个人感受php跟偏向前端&#xff0c; 写后端逻辑时没有像java又springboot工具方便。 但是和前端联调很方便…...

Elasticsearch 中管道介绍

Elasticsearch 中管道 文章目录 Elasticsearch 中管道1、管道( Ingest Pipeline)1.**管道描述**2.**处理器(Processors)**(1)**`attachment`处理器**(2)**`remove`处理器**3.**整体流程**4.**应用场景**示例:如何使用该管道总结2、如何设置`attachment`处理器取出`指定…...

将jinjia2后端传到前端的字典数据转化为json

后端代码 from flask import Flask, render_template, jsonifyapp Flask(__name__)app.route(/) def index():data {key: value, number: 123}return render_template(index.html, datadata)if __name__ __main__:app.run(debugTrue) 前端代码 使用tojson过滤器即可 <!…...

Linux中如何理解一切皆文件

根据之前的学习我们会有一些少许的疑惑&#xff0c;我们的stdin &#xff0c;stdout&#xff0c;stderr访问的是键盘显示器&#xff0c;然而键盘显示器等他们都有一个共同的特点就是他们都是外设&#xff0c;那么这些外设是怎么被看成是文件的呢&#xff1f; 看图可以知道硬件的…...

wordpress 翻译主题/最近发生的新闻

友情提示&#xff0c;您阅读本篇博文的先决条件如下&#xff1a; 1、本文示例基于Microsoft SQL Server 2008 R2调测。 2、具备 Transact-SQL 编程经验和使用 SQL Server Management Studio 的经验。 3、熟悉或了解Microsoft SQL Server 2008中的空间数据类型。 4、具备相应&am…...

国内出版社网站建设/杭州小程序建设公司

2019独角兽企业重金招聘Python工程师标准>>> 1.13 单用户模式 1、重启服务器&#xff0c;在选择内核界面使用上下箭头移动 2、选择内核并按“e” 3、找到如下这行,加入 rw init/sysroot/bin/sh rw 表示读写. sysroot/bin/sh 原系统所在目录 启动加载程序 输入…...

垃圾桶 东莞网站建设/百度网站提交

数据库除了“查询”之外&#xff0c;有时也会对数据库进行更新&#xff0c;这种情况下就需要对其进行增、删、改&#xff0c;所以对数据库的增删改成都是非常常见的操作。对数据库操作之前&#xff0c;你需要做两件事&#xff1a;1.创建一个你的数据库表存储的实体 2.建立程序与…...

wordpress建站图片效果/nba最新消息新闻

基本的Mandelbrot集波兰出生的法国和美国数学家Benoit Mandelbrot&#xff08;1924-2010&#xff09;以其与复杂的自相似表面相关的工作而闻名&#xff0c;他称之为分形。 他涉及分形的工作包括对递归公式的研究&#xff0c;该公式生成一个分形图像&#xff0c;现在称为Mandelb…...

网站活泼/seo团队

在python中复数的处理相对简单&#xff0c;定义一个复数通常来说有两种方式&#xff0c;代码如下&#xff1a; NB(注意): # 后面的部分表示输出结果。 class Debug:def complexDefine(self):# method 1x 1jprint(x) # 1jprint(type(x)) # <class complex># method 2…...

石家庄城市建设档案馆网站/成都网站建设公司

有时&#xff0c;使用临时的windows机子&#xff0c;要进行ftp简单操作&#xff0c;但又不想装其它的ftp-client&#xff0c;可以直接使用windows command中的命令ftp来操作。 通常&#xff0c;ftp服务器按标准&#xff0c;使用utf8编码格式发送文件名&#xff0c;而widows自带…...