当前位置: 首页 > news >正文

DeepSeek AI 推出 Janus 自回归框架,统一视觉、文本理解与生成的创新解决方案

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Janus 是一个统一多模态理解和生成任务的自回归框架。
  2. 它通过解耦视觉编码和统一的 Transformer 架构实现高效的多模态处理。
  3. Janus 在图像生成、图像标注、视觉问答等领域有广泛的应用前景。

正文(附运行示例)

Janus 是什么

在这里插入图片描述

Janus 是一个由 DeepSeek AI 推出的自回归框架,旨在统一多模态理解和生成任务。它通过将视觉编码分离成不同的路径,解决以往方法的局限性,并使用单一的变换器架构进行处理。这种设计不仅减轻了视觉编码器在理解和生成任务中的角色冲突,还提高了框架的灵活性。Janus 在性能上超越以往的统一模型,在某些情况下超过特定任务模型的性能,使其成为下一代统一多模态模型的有力候选者。

Janus 的主要功能

  • 多模态理解:Janus 能处理和理解包含图像和文本的信息,让大型语言模型能理解图像内容。
  • 图像生成:基于文本描述,Janus 能生成相应的图像,展现出从文本到图像的创造力。
  • 灵活性和扩展性:Janus 的设计支持独立选择最适合的编码方法进行多模态理解和生成,易于扩展和集成新的输入类型,如点云、EEG 信号或音频数据。

Janus 的技术原理

  • 视觉编码的解耦:Janus 基于为多模态理解和生成任务设置独立的编码路径,解决两项任务对视觉信息粒度不同需求的冲突。
  • 统一的 Transformer 架构:Janus 用单一的 Transformer 架构处理不同的编码路径,保持模型的统一性和效率。
  • 自回归框架:Janus 基于自回归方法,逐步生成文本或图像数据,在生成任务中具有灵活性和控制性。
  • 多阶段训练:Janus 的训练分为多个阶段,包括适配器和图像头部的训练、统一预训练和监督微调,确保模型在多模态任务上的表现。
  • 跨模态交互:Janus 能处理不同模态间的交互,如将文本转换为图像或从图像中提取信息回答问题,实现不同模态间的无缝转换和理解。

如何运行 Janus

# 示例代码:多模态理解
# 加载模型和处理器
model_path = "deepseek-ai/Janus-1.3B"
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()# 准备输入数据
conversation = [{"role": "User","content": "<image_placeholder>\nConvert the formula into latex code.","images": ["images/equation.png"],},{"role": "Assistant", "content": ""},
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True).to(vl_gpt.device)# 运行模型
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(inputs_embeds=inputs_embeds,attention_mask=prepare_inputs.attention_mask,pad_token_id=tokenizer.eos_token_id,bos_token_id=tokenizer.bos_token_id,eos_token_id=tokenizer.eos_token_id,max_new_tokens=512,do_sample=False,use_cache=True,
)# 解码输出
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)

资源

  • Janus GitHub 仓库:https://github.com/deepseek-ai/Janus
  • Janus HuggingFace 模型库:https://huggingface.co/deepseek-ai/Janus-1.3B
  • Janus arXiv 技术论文:https://arxiv.org/pdf/2410.13848

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章:

DeepSeek AI 推出 Janus 自回归框架,统一视觉、文本理解与生成的创新解决方案

❤️ 如果你也关注大模型与 AI 的发展现状&#xff0c;且对大模型应用开发非常感兴趣&#xff0c;我会快速跟你分享最新的感兴趣的 AI 应用和热点信息&#xff0c;也会不定期分享自己的想法和开源实例&#xff0c;欢迎关注我哦&#xff01; &#x1f966; 微信公众号&#xff…...

NORDIC nPM1100 是一款集成式电源管理

nPM1100 是一款集成式电源管理IC(PMIC)&#xff0c;采用2.1x2.1毫米WLCSP或4.0x4.0 毫米 QFN 封装 &#xff0c;内置线性模式锂离子/锂聚合物电池充电器。它采用高效DC/DC降压调节器&#xff0c;具有可配置的双模式 输出。 nPM1100是一款极其紧凑的PMIC器件&#xff0c;专为空间…...

深入RAG:知识密集型NLP任务的解决方案

在当今知识密集型任务日益增多的时代&#xff0c;如何有效地利用外部知识来增强语言模型的生成能力成为了一个重要的研究方向。RAG技术应运而生&#xff0c;通过从外部记忆源中检索相关信息&#xff0c;RAG不仅提高了模型生成的精准性和相关性&#xff0c;还解决了大型语言模型…...

vue-element-admin顶部导航栏的修改

基于vue-element-admin的顶部一级导航栏的调整&#xff0c;因为一级路由过多导致其他元素被挤到第二行&#xff0c;故现在将原来一级路由数组拆分成两个数组&#xff0c;第二个数组以子菜单显示 关键处调整代码 html <el-menu:active-text-color"variables.menuActiv…...

微信小程序 setData数据量过大的解决与分页加载的实现

我们经常使用setData方法来修改数据&#xff0c;从而达到更新页面的目的。但是当我们通过setData方法设置的数据过大时就会报如下错误。 vdSyncBatch 数据传输长度为 2260792 已经超过最大长度 1048576这是因为setData设置的数据量是有限制的&#xff0c;单次设置的数据大小不…...

体育动画直播嵌入方式以及作用

什么是体育动画直播&#xff1f; 体育动画直播是通过动画技术和实时数据&#xff0c;将体育赛事的进程以动态的方式展现出来。这种形式不仅可以实时呈现比赛的关键时刻&#xff0c;还能够将数据和信息以更生动、有趣的方式传达给观众。比如&#xff0c;在一场足球比赛中&#…...

腾讯云轻量服务器Lighthouse的前世今生

目录 序一、名字的由来二、Lighthouse的定位是什么&#xff0c;与CVM的差异化有哪些三、Lighthouse是如何实现简单易用的四、Lighthouse对于开发者有哪些具体的利好 序 印象中&#xff0c;腾讯云轻量应用服务器Lighthouse是在2020年正式上线的。 在其一经推出后&#xff0c;就…...

java实现redis的消息发送和消费,类似kafka功能

确保在 pom.xml 中添加了 Spring Data Redis 和 Jedis 的依赖。如下所示&#xff1a;<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency&g…...

【软件设计】常用设计模式--代理模式

文章目录 代理模式&#xff08;Proxy Pattern&#xff09;1. 概念2. 模式结构3. UML 类图4.实现方式C# 示例步骤1&#xff1a;定义主题接口步骤2&#xff1a;实现真实主题步骤3&#xff1a;实现代理类步骤4&#xff1a;客户端使用代理模式输出结果&#xff1a; Java 示例步骤1&…...

生命与自由,抑郁的来源

在中国文学史上&#xff0c;有一句极其伟大的话&#xff0c;它点出了所有人痛苦的根源。它出自《我与地坛》&#xff0c;太阳它每时每刻即是夕阳也都是旭日&#xff0c;当他从这一段熄灭着走下山去&#xff0c;收尽苍凉参照之际&#xff0c;也正是它在另一端燃烧着爬上山巅布散…...

CTFHUB技能树之文件上传——双写后缀

开启靶场&#xff0c;打开链接&#xff1a; 直接指明是双写绕过方法 上传06shaungxie.php&#xff0c;内容如下&#xff1a; 这一步其实最好换成.png或者.jpg或者.gif这三个符合文件格式的要求后缀 用burp抓包改包&#xff1a; 将php改成pphphp后再“Forward”&#xff1a; 上传…...

SpringBoot整合HTTPS

文章目录 1_Https 的作用2_获取证书3_配置项4_配置类5_控制类6_启动类 1_Https 的作用 保护用户的隐私信息安全&#xff1a; 在 HTTP 网站数据以明文方式传输&#xff0c;客户的隐私极容易被盗取和泄露&#xff0c;而部署 SSL 证书&#xff0c;数据以 HTTPS 加密传输&#xf…...

LVGL-从入门到熟练使用

LVGL简介 LVGL&#xff08; Light and Versatile Graphics Library &#xff09;是一个轻量、多功能的开源图形库。 1、丰富且强大的模块化图形组件&#xff1a;按钮 、图表 、列表、滑动条、图片等 2、高级的图形引擎&#xff1a;动画、抗锯齿、透明度、平滑滚动、图层混合等…...

【MySQL数据库】MySQL读写分离

文章目录 读写分离概念读写分离的动机读写分离的适用场景主从复制与读写分离MySQL 读写分离原理MySQL读写分离的实现方式代表性程序 MySQL读写分离实验搭建 MySQL 读写分离Amoeba 服务器配置测试读写分离 问答 读写分离 概念 读写分离是为了优化数据库性能&#xff0c;通过将…...

深度学习:简单计算图的反向传播传递导数计算

问题&#xff1a; 太郎在超市买了2个100日元一个的苹果&#xff0c;消费税是10%&#xff0c;请计算支付金额。 反向传播使用与正方向相反的箭头&#xff08;粗线&#xff09;表示。反向传播传递“局部导数”&#xff0c;将导数的值写在箭头的下方。在这个例子中&#xff0c;反向…...

学习AJAX请求(初步)24.10.21-10.23

1.AJAX概念 AJAX Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 AJAX 最大的优点是在不重新加载整个页面的情况下&#xff0c;可以与服务器交换数据并更新部分网页内容。 虽然所有的AJAX请求都是HTTP请求&#xff0c;但并非所有的HT…...

初识算法——二分查找

1.概念 二分查找算法也称折半查找&#xff0c;是一种非常高效的工作于有序数组的查找算法。 需求&#xff1a;在有序数组 A A A 内&#xff0c;查找值 t a r g e t target target 如果找到返回索引如果找不到返回 − 1 -1 −1 前提给定一个内含 n n n 个元素的有序数组…...

深入剖析 Java Spring 中的 @Autowired、@Resource、@Qualifier、@Inject 注解:使用详解与注意事项

文章目录 Autowired&#xff1a;Spring 最常用的注解1. 作用与简介2. 使用示例3. 注意事项 Resource&#xff1a;按名称注入的利器1. 作用与简介2. 使用示例3. 注意事项 Qualifier&#xff1a;解决多 bean 注入问题1. 作用与简介2. 使用示例3. 注意事项 Inject&#xff1a;标准…...

ThingsBoard规则链节点:Delete Attributes节点详解

引言 删除属性节点简介 用法 含义 应用场景 实际项目运用示例 智能家居安全系统 物流跟踪解决方案 工业自动化生产线 结论 引言 ThingsBoard是一个开源的物联网平台&#xff0c;它提供了设备管理、数据收集与处理以及实时监控等功能。其中&#xff0c;规则引擎是其核心…...

关于作为面试官以及如何准备面试的一些心得

关于作为面试官以及如何准备面试的一些心得 一、面试官&#xff08;我站在前端角度来说&#xff09; 当作为这样身份的时候&#xff0c;我想第一步应该是自己梳理一些从简到难、从点到面的问题 CSS - JS - 框架 - 项目 从这四个角度出发&#xff0c;一步一步的引导面试者的思…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...